zoukankan      html  css  js  c++  java
  • (全国多校重现赛一)F-Senior Pan

    Senior Pan fails in his discrete math exam again. So he asks Master ZKC to give him graph theory problems everyday. 
    The task is simple : ZKC will give Pan a directed graph every time, and selects some nodes from that graph, you can calculate the minimum distance of every pair of nodes chosen in these nodes and now ZKC only cares about the minimum among them. That is still too hard for poor Pan, so he asks you for help. 

    Input

    The first line contains one integer T, represents the number of Test Cases.1≤T≤5.Then T Test Cases, for each Test Cases, the first line contains two integers n,m representing the number of nodes and the number of edges.1≤n,m≤100000
    Then m lines follow. Each line contains three integers xi,yixi,yi representing an edge, and vivi representing its length.1≤xi,yixi,yi≤n,1≤vivi≤100000 
    Then one line contains one integer K, the number of nodes that Master Dong selects out.1≤K≤n 
    The following line contains K unique integers aiai, the nodes that Master Dong selects out.1≤aiai≤n,aiai!=aj 

    Output

    For every Test Case, output one integer: the answer

    Sample Input

    1
    5 6
    1 2 1
    2 3 3
    3 1 3
    2 5 1
    2 4 2
    4 3 1
    3
    1 3 5

    Sample Output

    Case #1: 2

    题意:给你一个无向图,然后给你K个数字,然后让你求任意两点之间的最短距离,并输出这些最短距离的最小值;

    题解:首先考虑最短路径的算法,Foyld肯定不行O(n^3);Dijkstra与SPFA都是O(nlog(n))。然后由于K的范围是10^5级别的

    如果暴力跑Dijkstra的话  n*(n+1)/2次。。。。 我们可以考虑二进制,任意两个数字至少有一位是不同的,所以我们枚举每一位上不同的点(也就17次就够了),将其分别放入两个集合,建立超级源点(0),和超级汇点(n+1),分别将两个集合与超级源点和超级汇点相连,距离为0,这样Dijkstra的单源多汇最短路就变为了,多源多汇最短路了,然后用优先队列优化的Dijkstra跑最短路即可,也就17*2次,O(nlog(n)),时间复杂度满足要求;

    参考代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const LL INF=0x3f3f3f3f3f3f3f3fLL;
    const int maxn=1e5+10;
    
    int n,m,k,tot;
    int u[maxn],v[maxn],vis[maxn],head[maxn],num[maxn];
    LL w[maxn],dis[maxn];
    
    struct Edge{
    	int u,v;
    	LL w;
    	Edge(int uu,int vv,LL ww) : u(uu),v(vv),w(ww) { }
    };
    
    vector<Edge> vec[maxn];
    
    struct Node{
    	int id;
    	LL W;
    	bool operator < (const Node &b) const
    	{
    		return W>b.W;
    	}
    };
    
    void addedge(int u,int v,LL w)
    {
    	vec[u].push_back(Edge(u,v,w));
    }
    
    priority_queue<Node> q;
    
    LL Dijkstra()
    {
    	memset(vis,0,sizeof vis);
    	memset(dis,INF,sizeof dis);
    	dis[0]=0;
    	q.push(Node{0,0} );
    	while(!q.empty())
    	{
    		Node u=q.top(); q.pop();
    		int Id=u.id;
    		if(vis[Id]) continue;
    		vis[Id]=1;
    		for(int i=0;i<vec[Id].size();i++)
    		{
    			if(!vis[vec[Id][i].v] && dis[vec[Id][i].v]>dis[Id]+vec[Id][i].w)
    			{
    				dis[vec[Id][i].v]=dis[Id]+vec[Id][i].w;
    				q.push(Node{vec[Id][i].v,dis[vec[Id][i].v]});
    			}
    		}
    	}
    	return dis[n+1];
    }
    
    void Init()
    {
    	tot=0;
    	memset(head,-1,sizeof head);
    	for(int i=0;i<=n+1;i++) vec[i].clear();
    }
    
    int main()
    {
    	int Cas=0,T;
    	scanf("%d",&T);
    	while(T--)
    	{
    		scanf("%d%d",&n,&m);
    		for(int i=1;i<=m;i++) scanf("%d%d%lld",u+i,v+i,w+i);
    		scanf("%d",&k);
    		for(int i=1;i<=k;i++) scanf("%d",num+i);
    		LL ans=INF;
    		for(int bit=0;bit<=17;bit++)
    		{
    			Init();
    			for(int i=1;i<=m;i++) addedge(u[i],v[i],w[i]);
    			for(int i=1;i<=k;i++)
    			{
    				if(num[i]&(1<<bit)) addedge(0,num[i],0);
    				else addedge(num[i],n+1,0);
    			}
    			ans=min(ans,Dijkstra());
    			
    			Init();
    			for(int i=1;i<=m;i++) addedge(u[i],v[i],w[i]);
    			for(int i=1;i<=k;i++) 
    			{
    				if((num[i]&(1<<bit))==0) addedge(0,num[i],0);
    				else addedge(num[i],n+1,0);
    			}
    			ans=min(ans,Dijkstra());
    		}
    		printf("Case #%d: %lld
    ",++Cas,ans);
    	}
    	
    	
    	return 0;
    }
    
  • 相关阅读:
    系列化与反系列化
    改造一下C# Substring()函数
    在C#后端处理一些结果然传给前端Javascript或是jQuery
    ASP.NET MVC传送参数至服务端
    MySQL 操作命令梳理(3)-pager
    MySQL 操作命令梳理(2)-alter(update、insert)
    redis持久化策略梳理及主从环境下的策略调整记录
    php-redis扩展模块安装记录
    centos下部署redis服务环境及其配置说明
    Iptables 规则用法小结
  • 原文地址:https://www.cnblogs.com/csushl/p/9386495.html
Copyright © 2011-2022 走看看