zoukankan      html  css  js  c++  java
  • HashMap

    一、概述

    HashMap是基于哈希表的Map接口实现的,它存储的是内容是键值对<key,value>映射,不保证映射的顺序

    数据结构为链表散列,jdk1.8以后链表深度大于8会转为红黑树

    HashMap的实例有两个参数影响性能,初始化容量initialCapacity(16)和loadFactor加载因子(0.75)

    二、源码

    1、属性

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    

    map初始的容量16,之所以要是2的幂次,为了方便元素插入时使用位运算计算存放的位置(取模效率较低),也为了更方便扩容(避免扩容后重复处理哈希碰撞)

    static final int MAXIMUM_CAPACITY = 1 << 30;
    

    上限取了int类型最大的2的幂次

    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    

    负载因子太小了浪费空间并且会发生更多次数的resize,太大了哈希冲突增加会导致性能不好,所以0.75只是一个折中的选择

    static final int TREEIFY_THRESHOLD = 8;
    

    当链表长度大于等于8时(且数组长度大于等于64),链表转为红黑树结构,之所以是8因为在负载因子为0.75的情况下(长度为length的数组放入0.75*length个元素),链表长度达到8的概率为0.00000006,非常小(一般只有分布非常不均匀的时候才会触发)

    static final int UNTREEIFY_THRESHOLD = 6;
    

    当红黑树个数小于等于6时,重新退化为链表,没有用7因为增加一个差值防止链表和红黑树频繁转换

    static final int MIN_TREEIFY_CAPACITY = 64;
    

    当哈希表容量大于等于64时才允许链表到红黑树的转换

    2、构造方法

    public HashMap() {
        //设置负载因子
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    public HashMap(int initialCapacity) {
        //设置初始大小和负载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    public HashMap(int initialCapacity, float loadFactor) {
        //校验范围
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
        this.loadFactor = loadFactor;
        //设置阈值(如果长度入参不是2的幂次,返回最接近的2的幂次)
        this.threshold = tableSizeFor(initialCapacity);
    }
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        //填充map
        putMapEntries(m, false);
    }
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                //扩容
                resize();
            //将m中的所有元素添加至HashMap中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }
    

      

    3、put方法

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //table未初始化或者长度为0,进行扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //通过位运算判断元素放在桶中的位置
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //发生碰撞,桶中已有元素
        else {
            Node<K,V> e; K k;
            //比较key和hash相同,将要覆盖value
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果是红黑树
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //如果是链表
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //告诉迭代器修改过数量了
        ++modCount;
        //如果实际大小大于阈值就扩容
        if (++size > threshold)
            resize();
        //插入后回调
        afterNodeInsertion(evict);
        return null;
    }
    

      

    4、get方法

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //如果table已经初始化,根据哈希寻找元素不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //如果第一个元素就像等,数组
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //如果是红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    //在链表中查找
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    

      

    5、resize方法

    final Node<K,V>[] resize() {
        // 当前table保存
        Node<K,V>[] oldTab = table;
        // 保存table大小
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 保存当前阈值 
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 之前table大小大于0
        if (oldCap > 0) {
            // 之前table大于最大容量
            if (oldCap >= MAXIMUM_CAPACITY) {
                // 阈值为最大整形
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 容量翻倍,使用左移,效率更高
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                oldCap >= DEFAULT_INITIAL_CAPACITY)
                // 阈值翻倍
                newThr = oldThr << 1; // double threshold
        }
        // 之前阈值大于0
        else if (oldThr > 0)
            newCap = oldThr;
        // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
        else {           
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 新阈值为0
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 初始化table
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 之前的table已经初始化过
        if (oldTab != null) {
            // 复制元素,重新进行hash
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

      

  • 相关阅读:
    Monad Maybe
    Linq怎么支持Monad
    创建我们第一个Monad
    Monad的重点
    解析器组合子
    NFA
    全排列算法
    R语言将数据框转成xts
    R语言的字符串处理
    wpf mvvm MenuItem的Command事件
  • 原文地址:https://www.cnblogs.com/ctxsdhy/p/13223584.html
Copyright © 2011-2022 走看看