一、概述

HashMap是基于哈希表的Map接口实现的,它存储的是内容是键值对<key,value>映射,不保证映射的顺序
数据结构为链表散列,jdk1.8以后链表深度大于8会转为红黑树
HashMap的实例有两个参数影响性能,初始化容量initialCapacity(16)和loadFactor加载因子(0.75)
二、源码
1、属性
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
map初始的容量16,之所以要是2的幂次,为了方便元素插入时使用位运算计算存放的位置(取模效率较低),也为了更方便扩容(避免扩容后重复处理哈希碰撞)
static final int MAXIMUM_CAPACITY = 1 << 30;
上限取了int类型最大的2的幂次
static final float DEFAULT_LOAD_FACTOR = 0.75f;
负载因子太小了浪费空间并且会发生更多次数的resize,太大了哈希冲突增加会导致性能不好,所以0.75只是一个折中的选择
static final int TREEIFY_THRESHOLD = 8;
当链表长度大于等于8时(且数组长度大于等于64),链表转为红黑树结构,之所以是8因为在负载因子为0.75的情况下(长度为length的数组放入0.75*length个元素),链表长度达到8的概率为0.00000006,非常小(一般只有分布非常不均匀的时候才会触发)
static final int UNTREEIFY_THRESHOLD = 6;
当红黑树个数小于等于6时,重新退化为链表,没有用7因为增加一个差值防止链表和红黑树频繁转换
static final int MIN_TREEIFY_CAPACITY = 64;
当哈希表容量大于等于64时才允许链表到红黑树的转换
2、构造方法
public HashMap() {
//设置负载因子
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(int initialCapacity) {
//设置初始大小和负载因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap(int initialCapacity, float loadFactor) {
//校验范围
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
//设置阈值(如果长度入参不是2的幂次,返回最接近的2的幂次)
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
//填充map
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
//扩容
resize();
//将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
3、put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//通过位运算判断元素放在桶中的位置
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//发生碰撞,桶中已有元素
else {
Node<K,V> e; K k;
//比较key和hash相同,将要覆盖value
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果是红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果是链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//告诉迭代器修改过数量了
++modCount;
//如果实际大小大于阈值就扩容
if (++size > threshold)
resize();
//插入后回调
afterNodeInsertion(evict);
return null;
}
4、get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果table已经初始化,根据哈希寻找元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//如果第一个元素就像等,数组
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果是红黑树
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//在链表中查找
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
5、resize方法
final Node<K,V>[] resize() {
// 当前table保存
Node<K,V>[] oldTab = table;
// 保存table大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 保存当前阈值
int oldThr = threshold;
int newCap, newThr = 0;
// 之前table大小大于0
if (oldCap > 0) {
// 之前table大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 阈值为最大整形
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量翻倍,使用左移,效率更高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值翻倍
newThr = oldThr << 1; // double threshold
}
// 之前阈值大于0
else if (oldThr > 0)
newCap = oldThr;
// oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 新阈值为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 之前的table已经初始化过
if (oldTab != null) {
// 复制元素,重新进行hash
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}