zoukankan      html  css  js  c++  java
  • 《算法》第四章部分程序 part 6

    ▶ 书中第四章部分程序,加上自己补充的代码,图的环相关

    ● 无向图中寻找环

      1 package package01;
      2 
      3 import edu.princeton.cs.algs4.In;
      4 import edu.princeton.cs.algs4.StdOut;
      5 import edu.princeton.cs.algs4.Graph;
      6 import edu.princeton.cs.algs4.Stack;
      7 
      8 public class class01
      9 {
     10     private boolean[] marked;
     11     private int[] edgeTo;
     12     private Stack<Integer> cycle;       // 用来存储环的顶点
     13 
     14     public class01(Graph G)
     15     {
     16         if (hasSelfLoop(G))
     17             return;
     18         if (hasParallelEdges(G))
     19             return;
     20         marked = new boolean[G.V()];
     21         edgeTo = new int[G.V()];
     22         for (int v = 0; v < G.V(); v++)
     23         {
     24             if (!marked[v])
     25                 dfs(G, -1, v);              // 首次调用时参数 u 要赋成非定点编号的值
     26         }
     27     }
     28 
     29     private void dfs(Graph G, int u, int v) // 深度优先探索,传入起点 v 及其父顶点 u
     30     {
     31         marked[v] = true;
     32         for (int w : G.adj(v))
     33         {
     34             if (cycle != null)              // 已经找到环,停止搜索(只搜一个就停)
     35                 return;
     36             if (!marked[w])
     37             {
     38                 edgeTo[w] = v;
     39                 dfs(G, v, w);
     40             }
     41             else if (w != u)                // 顶点 w 已经遍历,且边 w-v 不是来边 u-v,说明成环
     42             {
     43                 cycle = new Stack<Integer>();
     44                 for (int x = v; x != w; x = edgeTo[x])  // 这里 w 指向该环在本次遍历中最早遇到的顶点
     45                     cycle.push(x);
     46                 cycle.push(w);
     47                 cycle.push(v);
     48             }
     49         }
     50     }
     51 
     52     private boolean hasSelfLoop(Graph G)            // 自环
     53     {
     54         for (int v = 0; v < G.V(); v++)
     55         {
     56             for (int w : G.adj(v))
     57             {
     58                 if (v == w)
     59                 {
     60                     cycle = new Stack<Integer>();
     61                     cycle.push(v);
     62                     cycle.push(v);
     63                     return true;
     64                 }
     65             }
     66         }
     67         return false;
     68     }
     69 
     70     private boolean hasParallelEdges(Graph G)       // 平行边
     71     {
     72         marked = new boolean[G.V()];
     73         for (int v = 0; v < G.V(); v++)
     74         {
     75             for (int w : G.adj(v))
     76             {
     77                 if (marked[w])
     78                 {
     79                     cycle = new Stack<Integer>();
     80                     cycle.push(v);
     81                     cycle.push(w);
     82                     cycle.push(v);
     83                     return true;
     84                 }
     85                 marked[w] = true;
     86             }
     87             for (int w : G.adj(v))                  // 恢复遍历前的状态,一遍其他顶点进行检查
     88                 marked[w] = false;
     89         }
     90         return false;
     91     }
     92 
     93     public boolean hasCycle()
     94     {
     95         return cycle != null;
     96     }
     97 
     98     public Iterable<Integer> cycle()                // 将环用迭代器方式输出
     99     {
    100         return cycle;
    101     }
    102 
    103     public static void main(String[] args)
    104     {
    105         In in = new In(args[0]);
    106         Graph G = new Graph(in);
    107         class01 finder = new class01(G);
    108         if (finder.hasCycle())
    109         {
    110             for (int v : finder.cycle())
    111                 StdOut.print(v + " ");
    112             StdOut.println();
    113         }
    114         else
    115             StdOut.println("
    <main> Graph is aycyclic.
    ");
    116     }
    117 }

    ● 有向图中找环

     1 package package01;
     2 
     3 import edu.princeton.cs.algs4.In;
     4 import edu.princeton.cs.algs4.StdOut;
     5 import edu.princeton.cs.algs4.Digraph;
     6 import edu.princeton.cs.algs4.Stack;
     7 
     8 public class class01
     9 {
    10     private boolean[] marked;
    11     private int[] edgeTo;
    12     private boolean[] onStack;          // 记录递归顺序,递归回退时需要恢复(marked 不恢复)
    13     private Stack<Integer> cycle;
    14 
    15     public class01(Digraph G)
    16     {
    17         marked = new boolean[G.V()];
    18         edgeTo = new int[G.V()];
    19         onStack = new boolean[G.V()];
    20         for (int v = 0; v < G.V(); v++)
    21         {
    22             if (!marked[v] && cycle == null)
    23                 dfs(G, v);
    24         }
    25     }
    26 
    27     private void dfs(Digraph G, int v)  // 有向图不用传递起点的父顶点
    28     {
    29         onStack[v] = true;              // 进入新节点时两个变量都要记录
    30         marked[v] = true;
    31         for (int w : G.adj(v))
    32         {
    33             if (cycle != null)
    34                 return;
    35             if (!marked[w])
    36             {
    37                 edgeTo[w] = v;
    38                 dfs(G, w);
    39             }
    40             else if (onStack[w])        // 用 onStack 来检测本次递归是否已经遍历过顶点 w
    41             {
    42                 cycle = new Stack<Integer>();
    43                 for (int x = v; x != w; x = edgeTo[x])
    44                     cycle.push(x);
    45                 cycle.push(w);
    46                 cycle.push(v);
    47             }
    48         }
    49         onStack[v] = false;             // 递归回退,恢复搜索痕迹
    50     }
    51 
    52     public boolean hasCycle()
    53     {
    54         return cycle != null;
    55     }
    56 
    57     public Iterable<Integer> cycle()
    58     {
    59         return cycle;
    60     }
    61 
    62     public static void main(String[] args)
    63     {
    64         In in = new In(args[0]);
    65         Digraph G = new Digraph(in);
    66         class01 finder = new class01(G);
    67         if (finder.hasCycle())
    68         {
    69             for (int v : finder.cycle())
    70                 StdOut.print(v + " ");
    71             StdOut.println();
    72         }
    73         else
    74             StdOut.println("
    <main> Graph is aycyclic.
    ");
    75     }
    76 }

    ● 有向图中找环,广度优先搜索,非递归

     1 package package01;
     2 
     3 import edu.princeton.cs.algs4.StdOut;
     4 import edu.princeton.cs.algs4.StdRandom;
     5 import edu.princeton.cs.algs4.Digraph;
     6 import edu.princeton.cs.algs4.DigraphGenerator;
     7 import edu.princeton.cs.algs4.Stack;
     8 import edu.princeton.cs.algs4.Queue;
     9 
    10 public class class01
    11 {
    12     private Stack<Integer> cycle;
    13 
    14     public class01(Digraph G)
    15     {
    16         int[] indegree = new int[G.V()];
    17         for (int v = 0; v < G.V(); v++)
    18             indegree[v] = G.indegree(v);
    19         Queue<Integer> queue = new Queue<Integer>();
    20         for (int v = 0; v < G.V(); v++) // 所有入度为 0 的点入队,可作为遍历的起点,且绝对不是环的顶点
    21         {
    22             if (indegree[v] == 0)
    23                 queue.enqueue(v);
    24         }
    25         for (; !queue.isEmpty();)       // 广度优先遍历,反复将 “入度为 0 的顶点的相邻顶点” 的入度减 1,相当于砍掉所有的链
    26         {
    27             int v = queue.dequeue();
    28             for (int w : G.adj(v))
    29             {
    30                 indegree[w]--;
    31                 if (indegree[w] == 0)
    32                     queue.enqueue(w);
    33             }
    34         }
    35         int[] edgeTo = new int[G.V()];  // 父顶点数组是局部变量就够了
    36         int root = -1;                  // 初始化为非顶点的编号
    37         for (int v = 0; v < G.V(); v++) // 遍历顶点,如果还有顶点有入度,说明存在环,将其顶点赋给 root
    38         {
    39             if (indegree[v] == 0)       // 跳过链中的顶点
    40                 continue;
    41             else
    42                 root = v;
    43             for (int w : G.adj(v))      // 顺着入度仍大于 0 的顶点往前爬
    44             {
    45                 if (indegree[w] > 0)
    46                     edgeTo[w] = v;
    47             }
    48         }
    49         if (root != -1)                 // root 被覆盖,说明存在环,root 值为最后一个换的最后一个顶点
    50         {
    51             cycle = new Stack<Integer>();
    52             //for (boolean[] visited = new boolean[G.V()]; !visited[root]; visited[root] = true, root = edgeTo[root]);
    53             // 源码中维护了最后一个环的顶点集,但是以后再也没有用到,删掉
    54             cycle.push(root);
    55             for (int v = edgeTo[root]; v != root; v = edgeTo[v])
    56                 cycle.push(v);
    57             //cycle.push(root); 多压一次根节点
    58         }
    59     }
    60 
    61     public boolean hasCycle()
    62     {
    63         return cycle != null;
    64     }
    65 
    66     public Iterable<Integer> cycle()
    67     {
    68         return cycle;
    69     }
    70 
    71     public static void main(String[] args)
    72     {
    73         int V = Integer.parseInt(args[0]);  // 生成 DAG G(V,E),然后再添上 F 条边
    74         int E = Integer.parseInt(args[1]);
    75         int F = Integer.parseInt(args[2]);
    76         Digraph G = DigraphGenerator.dag(V, E);
    77         for (int i = 0; i < F; i++)
    78         {
    79             int v = StdRandom.uniform(V);
    80             int w = StdRandom.uniform(V);
    81             G.addEdge(v, w);
    82         }
    83         StdOut.println(G);
    84         class01 finder = new class01(G);
    85         if (finder.hasCycle())
    86         {
    87             for (int v : finder.cycle())
    88                 StdOut.print(v + " ");
    89             StdOut.println();
    90         }
    91         else
    92             StdOut.println("
    <main> Graph is aycyclic.
    ");
    93     }
    94 }
  • 相关阅读:
    51Nod 1009 数字1的数量(思维)
    「CTSC 2008」祭祀
    「CSA Round #41」BFS-DFS
    「CEOI2008」order
    「HEOI 2016/TJOI 2016」求和
    「HAOI 2018」染色
    「CF 961G」Partitions
    「WC 2007」剪刀石头布
    「POI 2010」Bridges
    「CQOI 2014」危桥
  • 原文地址:https://www.cnblogs.com/cuancuancuanhao/p/9814416.html
Copyright © 2011-2022 走看看