Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.
Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES NO NO YES NO
#include<bits/stdc++.h> using namespace std; typedef long long ll; int m,n,k; int a[1005] = {0}; int main(){ cin >> m >> n >> k; while(k--){ int flag = 1; memset(a,0,sizeof(a)); for(int i=0;i < n;i++){ cin >> a[i]; } for(int i=0;i < n;i++){ int cnt = 0; int fflag = 1; int temp = 1005; for(int j=i+1;j < n;j++){ if(a[i] > a[j]){ cnt++; if(a[j] > temp) fflag = 0; temp = a[j]; } } if(cnt > (m-1) || fflag == 0){ cout << "NO" << endl; flag = 0; break; } } if(flag) cout << "YES" << endl; } return 0; }
合法出栈顺序首先得每个数后面不能有多于m-1的数比他小,不然装不下。
其次就是后面比他小的数一定要按递减排列