zoukankan      html  css  js  c++  java
  • MapReduce高级_MapReduce运行机制-Map阶段

    12-MapReduce运行机制-Map阶段

     ====================================================================================================================================================================

    15-MapReduce-Reduce端join操作-步骤分析

     利用MapReduce来模拟数据中的连表查询

     orders.txt

    1001,20150710,p0001,2
    1002,20150710,p0002,3
    1002,20150710,p0003,3

    ----------------------------------------------------------------------------------------------------

    product.txt

    p0001,小米5,1000,2000
    p0002,锤子T1,1000,3000

    -------------------------------------------------------------------------------------------------------

     =================================================================================================================================================

    16-MapReduce-Reduce端join操作-Map阶段代码

     ReduceJoinMapper.java

    package com.mapreduce_reduce_join;

    import java.io.IOException;

    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.lib.input.FileSplit;

    public class ReduceJoinMapper extends Mapper<LongWritable, Text,Text, Text>{
    @Override
    protected void map(LongWritable key, Text value, Context context)
    throws IOException, InterruptedException {
    //将k1 v1,变成k2 v2
    //首先判断数据来自于那个文件
    FileSplit fileSplit = (FileSplit) context.getInputSplit();//数据切片
    String fileName = fileSplit.getPath().getName();

    if (fileName.equals("orders.txt")) {
    //获取pid
    String[] split = value.toString().split(",");
    context.write(new Text(split[2]), value);
    } else {

    //获取pid
    String[] split = value.toString().split(",");
    context.write(new Text(split[0]), value);
    }
    }

    }

    ---------------------------------------------------------------------------------------------------------------------------------------------------------------

    ReduceJoinReducer.java

    package com.mapreduce_reduce_join;

    import java.io.IOException;

    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;

    public class ReduceJoinReducer extends Reducer<Text , Text, Text, Text>{
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
    throws IOException, InterruptedException {
    String first="";
    String second="";
    for (Text value : values) {
    if (value.toString().startsWith("p")) {
    first=value.toString();
    } else {
    second=value.toString();
    }

    }

    if (first.equals("")) {
    context.write(key, new Text("NULL"+" "+second));
    } else {
    context.write(key, new Text(first+" "+second));
    }
    }

    }

    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    ReduceJoinJobMain.java

    package com.mapreduce_reduce_join;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;

    public class ReduceJoinJobMain extends Configured implements Tool{


    @Override
    public int run(String[] arg0) throws Exception {
    //创建一个任务对象
    Job job = Job.getInstance(super.getConf(),"mapreduce_reduce_join");

    //打包在集群运行时,需要做一个配置
    job.setJarByClass(ReduceJoinJobMain.class);

    //设置任务对象
    //第一步:设置读取文件的类:K1和V1(读取原文件TextInputFormat)
    job.setInputFormatClass(TextInputFormat.class);
    //设置从哪里读
    TextInputFormat.addInputPath(job,new Path("hdfs://node01:8020/input/reduce_join"));
    //第二步:设置Mapper类
    job.setMapperClass(ReduceJoinMapper.class);
    //设置Map阶段的输出类型: k2和v2的类型
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(Text.class);
    //进入Shuffle阶段,采取默认分区,默认排序,默认规约,默认分组
    //第三,四,五,六步,采取默认分区,默认排序,默认规约,默认分组

    //第七步:设置Reducer类
    job.setReducerClass(ReduceJoinReducer.class);
    //设置reduce阶段的输出类型
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    //第八步: 设置输出类
    job.setOutputFormatClass(TextOutputFormat.class);
    //设置输出的路径
    //注意:wordcount_out这个文件夹一定不能存在
    TextOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/out/reduce_join_out"));

    boolean b= job.waitForCompletion(true);//固定写法;一旦任务提交,处于等待任务完成状态
    return b?0:1;
    }

    public static void main(String[] args) throws Exception {
    Configuration configuration = new Configuration();
    //启动一个任务
    //返回值0:执行成功
    int run = ToolRunner.run(configuration, new ReduceJoinJobMain(), args);
    System.out.println(run);
    }
    }

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

     

  • 相关阅读:
    防抖函数
    video.js汉化
    vscode 设置
    webpack配置
    寄生组合继承
    数组排序
    操作节点的方法
    vscde软件
    vue目录详解
    前端
  • 原文地址:https://www.cnblogs.com/curedfisher/p/12611504.html
Copyright © 2011-2022 走看看