zoukankan      html  css  js  c++  java
  • 【深度学习笔记】第 1 课:从机器学习到深度学习

      这个课程分为4个部分,首先需要彻底通过 端对端 的方法来训练第一个简单模型,这样才能打好基础,为此,将讨论 逻辑分类、随机优化,和关于训练模型的通用数据实践。

      下一步训练第一个深度网络,也将学到利用正则化技术去训练更大的模型,第三部分,将深入介绍图像和卷积模型,第四部分,是关于一般的文本和序列,我们将训练 嵌入和递归模型。

      Classification is the task of taking an input.分类是一种给定输入和标记的任务。分类或者预测prediction是机器学习的基石.

      下面开始训练一个逻辑回归分类器

      逻辑回归分类器是一种线性分类器,它接受输入,比如图片的像素,对输入执行一个线性函数来生成预测。线性函数实际上就是一个巨大的矩阵相乘,

    它把输入当成一个大的矢量 用X表示,然后乘以一个矩阵产生预测,每个类一个输出。自始至终,我们将输入表示为X   权重表示为W   偏置项表示为b。

      w 和 b 则是机器学习的用武之地,训练这个模型,意味着我们想要尝试找到一个权重和偏置,使得预测的结果表现的很好。

      我们怎么用这些结果去执行分类呢?

      我们把每张图片当成输入且只有一个标签,因此我们将这些结果转化为概率,这将使得正确分类的概率非常接近1,而其他分类的概率接近于0。

       把这个结果转化为概率的方法是:(如下)

      使用softmax函数,上图中间是他的表达式,除了公式,关于它最重要的是,它可以将任何的结果转化成正确的概率。正确的概率的总和是1,且当结果较大时,概率较大,结果较小时,概率较小。

      在逻辑回归的概念中, scores 结果常被称为 logits。

  • 相关阅读:
    mysql中如何根据id,一次查询对应id的数据
    DataFrame中merge、concat、join,以及用一个data更新另一个data的方法
    pandas中drop_duplicates用法
    DataFrame中根据某字段选取重复字段数据
    金融数据处理过程中的一些小tip
    pandas中某一列的值满足一定条件就改变
    MIKE指标
    python 数据处理中的记录
    python绘制主次坐标图
    python学习笔记之四-多进程&多线程&异步非阻塞
  • 原文地址:https://www.cnblogs.com/custer/p/6337591.html
Copyright © 2011-2022 走看看