zoukankan      html  css  js  c++  java
  • Linux设备驱动之USB hub驱动(续)

    http://blogold.chinaunix.net/u3/111381/showart_2163688.html

    5.2.2:接口驱动中的hub_thread()函数

    我们之前在分析usb_hub_init()的代码的时候,忽略掉了一部份.

    代码片段如下所示:

    int usb_hub_init(void)

    {

       ……

        khubd_task = kthread_run(hub_thread, NULL, "khubd");

        ……

    }

    Kthread_run()是kernel中用来启动一个新kernel线程的接口,它所要执行的函数就是后面跟的第一个参数.在这里,也就是 hub_thread().另外,顺带提一句,要终止kthread_run()创建的线程,可以调用kthread_stop().

    Hub_thread()的代码如下:

    static int hub_thread(void *__unused)

    {

        set_freezable();

        do {

            hub_events();

            wait_event_freezable(khubd_wait,

                    !list_empty(&hub_event_list) ||

                    kthread_should_stop());

        } while (!kthread_should_stop() || !list_empty(&hub_event_list));

        pr_debug("%s: khubd exiting\n", usbcore_name);

        return 0;

    }

    在上面的代码中, kthread_should_stop()用来判断是否有kthread_stop()将其终止.

    在这里,我们终止看到,我们在前面要唤醒的等待队列khubd_wait,也就是在这个地方了.

    这个函数的核心处理是hub_events().分段分析代码,如下:

    static void hub_events(void)

    {

        struct list_head *tmp;

        struct usb_device *hdev;

        struct usb_interface *intf;

        struct usb_hub *hub;

        struct device *hub_dev;

        u16 hubstatus;

        u16 hubchange;

        u16 portstatus;

        u16 portchange;

        int i, ret;

        int connect_change;

        /*

         *  We restart the list every time to avoid a deadlock with

         * deleting hubs downstream from this one. This should be

         * safe since we delete the hub from the event list.

         * Not the most efficient, but avoids deadlocks.

         */

        while (1) {

            /* Grab the first entry at the beginning of the list */

            //如果hub_event_list为空,退出

            spin_lock_irq(&hub_event_lock);

            if (list_empty(&hub_event_list)) {

                spin_unlock_irq(&hub_event_lock);

                break;

            }

            //取hub_event_list中的后一个元素,并将其断链

            tmp = hub_event_list.next;

            list_del_init(tmp);

            hub = list_entry(tmp, struct usb_hub, event_list);

            kref_get(&hub->kref);

            spin_unlock_irq(&hub_event_lock);

            hdev = hub->hdev;

            hub_dev = hub->intfdev;

            intf = to_usb_interface(hub_dev);

            dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x\n",

                    hdev->state, hub->descriptor

                        ? hub->descriptor->bNbrPorts

                        : 0,

                    /* NOTE: expects max 15 ports... */

                    (u16) hub->change_bits[0],

                    (u16) hub->event_bits[0]);

            /* Lock the device, then check to see if we were

             * disconnected while waiting for the lock to succeed. */

            usb_lock_device(hdev);

            //如果hub断开了,继续hub_event_list中的下一个

            if (unlikely(hub->disconnected))

                goto loop;

            /* If the hub has died, clean up after it */

            //设备没有连接上

            if (hdev->state == USB_STATE_NOTATTACHED) {

                hub->error = -ENODEV;

                //将下面的子设备全部disable

                hub_pre_reset(intf);

                goto loop;

            }

            /* Autoresume */

            ret = usb_autopm_get_interface(intf);

            if (ret) {

                dev_dbg(hub_dev, "Can't autoresume: %d\n", ret);

                goto loop;

            }

            /* If this is an inactive hub, do nothing */

            //hub 暂停

            if (hub->quiescing)

                goto loop_autopm;

            //hub 有错误发生?

            if (hub->error) {

                dev_dbg (hub_dev, "resetting for error %d\n",

                    hub->error);

                ret = usb_reset_composite_device(hdev, intf);

                if (ret) {

                    dev_dbg (hub_dev,

                        "error resetting hub: %d\n", ret);

                    goto loop_autopm;

                }

                hub->nerrors = 0;

                hub->error = 0;

            }

    首先,从hub_event_list摘下第一个元素,根据我们之前在接口驱动probe过程的kick_khubd()函数分析中,有将hub-> event_list添加到hub_event_list.因此,就可以顺藤摸瓜找到hub,再根据hub结构,找到接口结构和所属的usb 设备结构.

    然后,进行第一个重要的判断.如果hub被断开了,则,断开hub下面所连接的所有端口,这是在hub_pre_reset()中完成的.

    最后,进行第二个重要的判断,如果hub发生了错误,则reset它下面的所有端口,这是在usb_reset_composite_device()中完成的.

            /* deal with port status changes */

            //遍历hub中的每一个port

            for (i = 1; i <= hub->descriptor->bNbrPorts; i++) {

    {

                if (test_bit(i, hub->busy_bits))

                    continue;

                connect_change = test_bit(i, hub->change_bits);

                if (!test_and_clear_bit(i, hub->event_bits) &&

                        !connect_change && !hub->activating)

                    continue;

            //Get_Port_Status:取得端口状态.

            //会取得port的改变值和状态值

                ret = hub_port_status(hub, i,

                        &portstatus, &portchange);

                if (ret < 0)

                    continue;

                //如果对应端口没有在设备树上,且端口显示已经连接上

                //将connect_change置为1

                if (hub->activating && !hdev->children[i-1] &&

                        (portstatus &

                            USB_PORT_STAT_CONNECTION))

                    connect_change = 1;

                //端口的连接状态发生了改变.需要发送Clear_Feature

                if (portchange & USB_PORT_STAT_C_CONNECTION) {

                    clear_port_feature(hdev, i,

                        USB_PORT_FEAT_C_CONNECTION);

                    connect_change = 1;

                }

                //端口的状态从enable 变为了disable

                if (portchange & USB_PORT_STAT_C_ENABLE) {

                    if (!connect_change)

                        dev_dbg (hub_dev,

                            "port %d enable change, "

                            "status %08x\n",

                            i, portstatus);

                    clear_port_feature(hdev, i,

                        USB_PORT_FEAT_C_ENABLE);

                    /*

                     * EM interference sometimes causes badly

                     * shielded USB devices to be shutdown by

                     * the hub, this hack enables them again.

                     * Works at least with mouse driver.

                     */

                     //端口已经被停止了,且端口已经被连在设备树中.

                     //需要重启一下此端口

                    if (!(portstatus & USB_PORT_STAT_ENABLE)

                        && !connect_change

                        && hdev->children[i-1]) {

                        dev_err (hub_dev,

                            "port %i "

                            "disabled by hub (EMI?), "

                            "re-enabling...\n",

                            i);

                        connect_change = 1;

                    }

                }

                //Resume完成   

                if (portchange & USB_PORT_STAT_C_SUSPEND) {

                    clear_port_feature(hdev, i,

                        USB_PORT_FEAT_C_SUSPEND);

                    //如果端口连接了设备,就将设备唤醒

                    if (hdev->children[i-1]) {

                        ret = remote_wakeup(hdev->

                                children[i-1]);

                        if (ret < 0)

                            connect_change = 1;

                    }

                    //如果端口没有连接设备,就将端口禁用

                    else {

                        ret = -ENODEV;

                        hub_port_disable(hub, i, 1);

                    }

                    dev_dbg (hub_dev,

                        "resume on port %d, status %d\n",

                        i, ret);

                }

                //有过流保护,需要对hub power on

                if (portchange & USB_PORT_STAT_C_OVERCURRENT) {

                    dev_err (hub_dev,

                        "over-current change on port %d\n",

                        i);

                    clear_port_feature(hdev, i,

                        USB_PORT_FEAT_C_OVER_CURRENT);

                    hub_power_on(hub);

                }

                //Reset状态已经完成了

                if (portchange & USB_PORT_STAT_C_RESET) {

                    dev_dbg (hub_dev,

                        "reset change on port %d\n",

                        i);

                    clear_port_feature(hdev, i,

                        USB_PORT_FEAT_C_RESET);

                }

                if (connect_change)

                    hub_port_connect_change(hub, i,

                            portstatus, portchange);

            }

    这段代码就是最核心的操作了,首先要说明的是,在struct usb_dev中,有一个struct usb_device *children[USB_MAXCHILDREN]的成员,它是表示对应端口序号上所连接的usb设备.

    在这里,它遍历hub上的每一个端口,如果端口的连接会生了改变(connect_change等于1)的情况,就会调用hub_port_connect_change().我们来看一下,什么情况下, hub_port_connect_change才会被设为1.

    1:端口在hub->change_bits中被置位.搜索整个代码树,发生在设置hub->change_bits的地方,只有在hub_port_logical_disconnect()中手动将端口禁用,会将对应位置1.

    2:hub上没有这个设备树上没有这个端口上的设备.但显示端口已经连上了设备

    3:hub这个端口上的连接发生了改变,从端口有设备连接变为无设备连接,或者从无设备连接变为有设备连接.

    4:hub的端口变为了disable,此时这个端口上连接了设备,但被显示该端口已经变禁用,需要将connect_change设为1.

    5:端口状态从SUSPEND变成了RESUME,远程唤醒端口上的设备失败,就需要将connect_change设为1.

    另外hub_port_connect_change()函数我们放在后面再来讨论

                    //对HUB的处理

            /* deal with hub status changes */

            //如果hub状态末变化,不需要做任何处理

            if (test_and_clear_bit(0, hub->event_bits) == 0)

                ;   /* do nothing */

            //Get_hub_status 失败?

            else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0)

                dev_err (hub_dev, "get_hub_status failed\n");

            else {

                //这里是对应hub 状态发生了改变,且Get_hub_status正常返回的情况

                //如果hub的本地电源供电发生了改变

                if (hubchange & HUB_CHANGE_LOCAL_POWER) {

                    dev_dbg (hub_dev, "power change\n");

                    clear_hub_feature(hdev, C_HUB_LOCAL_POWER);

                    //如果是本地电源供电

                    if (hubstatus & HUB_STATUS_LOCAL_POWER)

                        /* FIXME: Is this always true? */

                        hub->limited_power = 1;

                    //如果本电源不供电

                    else

                        hub->limited_power = 0;

                }

                //如果hub 发生过电源保护,需要对hub power on

                if (hubchange & HUB_CHANGE_OVERCURRENT) {

                    dev_dbg (hub_dev, "overcurrent change\n");

                    msleep(500);    /* Cool down */

                    clear_hub_feature(hdev, C_HUB_OVER_CURRENT);

                               hub_power_on(hub);

                }

            }

            hub->activating = 0;

            /* If this is a root hub, tell the HCD it's okay to

             * re-enable port-change interrupts now. */

            if (!hdev->parent && !hub->busy_bits[0])

                usb_enable_root_hub_irq(hdev->bus);

    loop_autopm:

            /* Allow autosuspend if we're not going to run again */

            if (list_empty(&hub->event_list))

                usb_autopm_enable(intf);

    loop:

            usb_unlock_device(hdev);

            kref_put(&hub->kref, hub_release);

            } /* end while (1) */

    }

    处理完hub上的port之后,就要来处理hub本身的状态改变了,结合代码中的注释应该很容易看懂,在这里主要是清除hub的对应Feature.

    之后,将  hub->activating设为了0,如果hub是root hub,需要重新打开root hub的中断.

    这个函数到这里就完成了.不过,其中的几个子函数,涉及到的操作很重要,现分析如下:

    1: hub_pre_reset()函数.

    该函数在设备断开连接的时候,将其下挂载的所有子设备全部注销掉,代码如下所示:

    static int hub_pre_reset(struct usb_interface *intf)

    {

        struct usb_hub *hub = usb_get_intfdata(intf);

        struct usb_device *hdev = hub->hdev;

        int i;

        /* Disconnect all the children */

        for (i = 0; i < hdev->maxchild; ++i) {

            if (hdev->children[i])

                usb_disconnect(&hdev->children[i]);

        }

        hub_quiesce(hub);

        return 0;

    }

    它将设备上所挂载的所有设备全部都调用usb_disconnect()来断开联接.之后,再对hub调用hub_quiesce().

    hub_quiesce()是和hub_activate()相对应的一个函数, hub_activate()在前面已经分析过了,现在来对hub_quiesce()进行分析.

    代码如下:

    static void hub_quiesce(struct usb_hub *hub)

    {

        /* (nonblocking) khubd and related activity won't re-trigger */

        hub->quiescing = 1;

        hub->activating = 0;

        /* (blocking) stop khubd and related activity */

        usb_kill_urb(hub->urb);

        if (hub->has_indicators)

            cancel_delayed_work_sync(&hub->leds);

        if (hub->tt.hub)

            cancel_work_sync(&hub->tt.kevent);

    }

    首先,它调hub->quiescing置为1,而activating置为0.这和hub_activate()刚好是相反的动作.之后,取消hub的中断传输出URB.取得TT和LED的工作队列.

    我们在后面分析的HUB中断URB传输,可以知道,如果将这个URB禁用,那么,就不会将hub->event_list添加到hub_event_list.因此,也不会进入到hub_events()函数.

    usb_disconnect()用来断开某个设备,代码如下:

    void usb_disconnect(struct usb_device **pdev)

    {

        struct usb_device   *udev = *pdev;

        int         i;

        if (!udev) {

            pr_debug ("%s nodev\n", __FUNCTION__);

            return;

        }

        /* mark the device as inactive, so any further urb submissions for

         * this device (and any of its children) will fail immediately.

         * this quiesces everyting except pending urbs.

         */

        usb_set_device_state(udev, USB_STATE_NOTATTACHED);

        dev_info (&udev->dev, "USB disconnect, address %d\n", udev->devnum);

        usb_lock_device(udev);

        /* Free up all the children before we remove this device */

        for (i = 0; i < USB_MAXCHILDREN; i++) {

            if (udev->children[i])

                usb_disconnect(&udev->children[i]);

        }

        /* deallocate hcd/hardware state ... nuking all pending urbs and

         * cleaning up all state associated with the current configuration

         * so that the hardware is now fully quiesced.

         */

        dev_dbg (&udev->dev, "unregistering device\n");

        usb_disable_device(udev, 0);

        usb_unlock_device(udev);

        /* Unregister the device.  The device driver is responsible

         * for removing the device files from usbfs and sysfs and for

         * de-configuring the device.

         */

        device_del(&udev->dev);

        /* Free the device number and delete the parent's children[]

         * (or root_hub) pointer.

         */

        release_address(udev);

        /* Avoid races with recursively_mark_NOTATTACHED() */

        spin_lock_irq(&device_state_lock);

        *pdev = NULL;

        spin_unlock_irq(&device_state_lock);

        usb_stop_pm(udev);

        put_device(&udev->dev);

    }

    很容易看出.这个函数采用深度遍历算法,它依次遍历udev->children[]下的子设备,然后依然调用usb_disconnect().

    这个函数中的另外几个子函数有的在前面已经分析过,有的是设备模型中的基础函数.很有是跟PM相关的,在这里就不做详细分析,来看一下release_address()函数,顾名思意,它用来释放设备的地址,如下示:

    static void release_address(struct usb_device *udev)

    {

        if (udev->devnum > 0) {

            clear_bit(udev->devnum, udev->bus->devmap.devicemap);

            udev->devnum = -1;

        }

    }

    我们在分析UHCI中,有关root hub的初始化时说明,设各号都是保存在bus->devmap数组中的.在这里,只需要将该设备号在数组中的某位清了即可.

    hub_pre_reset()函数就分析到这里了.

    注意到这里调用的put_device(&udev->dev)没.根据Linux设备模型的分析,这时它会调用跟它绑定的driver的remove()接口,对应的,这个函数会将操作回溯到usb_driver-> disconnect().可以自行查阅这个过程.

    或许,有人的疑问又来了?要是这个usb_dev没有跟usb_driver绑定怎么办呢?

    不要忘记我们之前的分析了,对于usb_generic_driver这个驱动是会适用所有的usb_dev的.^_^,也是说,无论如何,usb_dev都会绑定到usb_generic_driver.

    2: hub_port_connect_change()函数

    这个函数是一个很核心的操作,它的代码如下:

    static void hub_port_connect_change(struct usb_hub *hub, int port1,

                        u16 portstatus, u16 portchange)

    {

        struct usb_device *hdev = hub->hdev;

        struct device *hub_dev = hub->intfdev;

        struct usb_hcd *hcd = bus_to_hcd(hdev->bus);

        u16 wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);

        int status, i;

        dev_dbg (hub_dev,

            "port %d, status %04x, change %04x, %s\n",

            port1, portstatus, portchange, portspeed (portstatus));

        //HUB LED

        if (hub->has_indicators) {

            set_port_led(hub, port1, HUB_LED_AUTO);

            hub->indicator[port1-1] = INDICATOR_AUTO;

        }

        /* Disconnect any existing devices under this port */

        //如果对应端口已经有设备连接,先将其断开

        if (hdev->children[port1-1])

            usb_disconnect(&hdev->children[port1-1]);

        //将hub_change_bits中的对应位清零,以免下次进来的时候,还会检测到

        //hub_port_logical_disconnect()对该值的设置

        clear_bit(port1, hub->change_bits);

    #ifdef  CONFIG_USB_OTG

        /* during HNP, don't repeat the debounce */

        if (hdev->bus->is_b_host)

            portchange &= ~USB_PORT_STAT_C_CONNECTION;

    #endif

        //连接发生改变

        //连接反弹的处理,实际上就是除抖动

        if (portchange & USB_PORT_STAT_C_CONNECTION) {

            status = hub_port_debounce(hub, port1);

            if (status < 0) {

                if (printk_ratelimit())

                    dev_err (hub_dev, "connect-debounce failed, "

                            "port %d disabled\n", port1);

                goto done;

            }

            portstatus = status;

        }

    在这里,我们忽略掉HUB LED灯的操作,然后,将HUB对应端口下面挂载的设备断开.经过前面的分析,进入到这个函数的可能有多种情况(在hub_events()中分析的五种情况).可以分为三大类:

    一类是之前有连接之后没联接的,在这里,将hub 对应端口下的设备全部断开是无可非议的.

    第二类是之前没有,之后有连接的,在这里,if(hdev->children[port-1])的判断是不会满足的.

    第三类是需要重置的端口,在这里先将设备断开,然后再将它联连上去好了.

    接下来,将hub->change_bits的对应位清掉,该位是在函数hub_port_logical_disconnect()中被置的,在这里将其清除,免得下次在进入hub_events()的时候,再次检测到这个位发生改变.

    忽略掉CONFIG_USB_OTG的处理,这个宏我们在前面分析过很多次了,这里不再赘述.

    如果该端口的连接发生改变(从有连接到无接接,或者从无连接到有连接),就有一个除抖动的过程,usb2.0 spec上规定,除抖动的时间为100ms.

    也许有人会有这样的想法: 那检测到移除了一个设备,但它在100ms又插上去了,这里适不适合这里的抖动检测的情况呢?

    我们先从代码的流程看,检测到连接发生改变,进入到hub_port_connect_change(),它首先就会将端口上的设备移除.这样,就算你在100ms上连接上去了,也得要再次建立.

    从usb2.0的协议看来,设备移除后,usb设备里保存的信息(例如选择的配置,给它分配的地址)全部都丢失了,必须要重新进行配置过程才能够使用.

    在这里,顺便将hub_port_debounce()列出,来看一下具体的除抖过程是怎么样实现的.

    static int hub_port_debounce(struct usb_hub *hub, int port1)

    {

        int ret;

        int total_time, stable_time = 0;

        u16 portchange, portstatus;

        unsigned connection = 0xffff;

        for (total_time = 0; ; total_time += HUB_DEBOUNCE_STEP) {

            ret = hub_port_status(hub, port1, &portstatus, &portchange);

            if (ret < 0)

                return ret;

            if (!(portchange & USB_PORT_STAT_C_CONNECTION) &&

                 (portstatus & USB_PORT_STAT_CONNECTION) == connection) {

                stable_time += HUB_DEBOUNCE_STEP;

                if (stable_time >= HUB_DEBOUNCE_STABLE)

                    break;

            } else {

                stable_time = 0;

                connection = portstatus & USB_PORT_STAT_CONNECTION;

            }

            if (portchange & USB_PORT_STAT_C_CONNECTION) {

                clear_port_feature(hub->hdev, port1,

                        USB_PORT_FEAT_C_CONNECTION);

            }

            if (total_time >= HUB_DEBOUNCE_TIMEOUT)

                break;

            msleep(HUB_DEBOUNCE_STEP);

        }

        dev_dbg (hub->intfdev,

            "debounce: port %d: total %dms stable %dms status 0x%x\n",

            port1, total_time, stable_time, portstatus);

        if (stable_time < HUB_DEBOUNCE_STABLE)

            return -ETIMEDOUT;

        return portstatus;

    }

    函数中的stable_time表示隐定的时间.在hub_events()的代码分析时,我们看到了,在检测到连接状态发生改变的时候,会发送Clear_Feature.因此,如果在这里检测到有USB_PORT_STAT_C_CONNECTION,就说明之后又有一次连接状态发生改变了.

    分析这个函数的时候,要注意有这样的情况,端口的连接状态,一直在波动,即时有连接,时末有连接.

    还有注意, connection的初始值是0xffff, 所以(portstatus & USB_PORT_STAT_CONNECTION) == connection这个判断是肯定不会满足的,因为hub_port_status()取得的portstatus里面还有一些保留位.所以,在第一次进入这个循环的时候,就会进入到else中,就会将stable_time置0,而connection也保存了这一次的连接信息.

    如果端口维持前一个状态,那循环中的流程就会满足第一个if,在这个if的操作里,会增加stable_time的值.

    如果端口的状态发生了改变,那循环中的流程就会满足else,又将stable_time和connection初始化了.另外,要记得在状态发生改变的时候,要发送Clear_Feature,将状态清除.

    在函数里,定义的测试时间是1500ms.如果在这个时间内,端口还末处于稳定状态,就会返回-ETIMEDOUT.

    如果已经处于稳定状态了,就会返回稳定状态下的portstatus.

    /* Return now if nothing is connected */

        //如果接口上没有连接了,可以直接退出了

        if (!(portstatus & USB_PORT_STAT_CONNECTION)) {

            /* maybe switch power back on (e.g. root hub was reset) */

            if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2

                    && !(portstatus & (1 << USB_PORT_FEAT_POWER)))

                set_port_feature(hdev, port1, USB_PORT_FEAT_POWER);

            if (portstatus & USB_PORT_STAT_ENABLE)

                goto done;

            return;

        }

    经过去抖后,端口稳定的处于断开连接状态.说明端口已经没有设备了.然后,再判断hub是否有电源开关 ((wHubCharacteristics & HUB_CHAR_LPSM) < 2),portstatus 的 USB_PORT_FEAT_POWER位是否被设置,如果没有被设置,则说明该端口断电了.如果hub有电源开关,且端口没有上电,则需要发送 POWER的Set_Feature来为之上电.

    如果端口依然处理enable状态,就会跳转到标号done处,就端口disalbe.

        //如果接口上面有了联接,需要为联接在端口上设备建立连接

        for (i = 0; i < SET_CONFIG_TRIES; i++) {

            struct usb_device *udev;

            /* reallocate for each attempt, since references

             * to the previous one can escape in various ways

             */

            udev = usb_alloc_dev(hdev, hdev->bus, port1);

            if (!udev) {

                dev_err (hub_dev,

                    "couldn't allocate port %d usb_device\n",

                    port1);

                goto done;

            }

            usb_set_device_state(udev, USB_STATE_POWERED);

            udev->speed = USB_SPEED_UNKNOWN;

            udev->bus_mA = hub->mA_per_port;

            udev->level = hdev->level + 1;

            /* set the address */

            choose_address(udev);

            if (udev->devnum <= 0) {

                status = -ENOTCONN; /* Don't retry */

                goto loop;

            }

            /* reset and get descriptor */

            status = hub_port_init(hub, udev, port1, i);

            if (status < 0)

                goto loop;

            /* consecutive bus-powered hubs aren't reliable; they can

             * violate the voltage drop budget.  if the new child has

             * a "powered" LED, users should notice we didn't enable it

             * (without reading syslog), even without per-port LEDs

             * on the parent.

             */

            if (udev->descriptor.bDeviceClass == USB_CLASS_HUB

                    && udev->bus_mA <= 100) {

                u16 devstat;

                status = usb_get_status(udev, USB_RECIP_DEVICE, 0,

                        &devstat);

                if (status < 2) {

                    dev_dbg(&udev->dev, "get status %d ?\n", status);

                    goto loop_disable;

                }

                le16_to_cpus(&devstat);

                if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) {

                    dev_err(&udev->dev,

                        "can't connect bus-powered hub "

                        "to this port\n");

                    if (hub->has_indicators) {

                        hub->indicator[port1-1] =

                            INDICATOR_AMBER_BLINK;

                        schedule_delayed_work (&hub->leds, 0);

                    }

                    status = -ENOTCONN; /* Don't retry */

                    goto loop_disable;

                }

            }

            /* check for devices running slower than they could */

            if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200

                    && udev->speed == USB_SPEED_FULL

                    && highspeed_hubs != 0)

                check_highspeed (hub, udev, port1);

            /* Store the parent's children[] pointer.  At this point

             * udev becomes globally accessible, although presumably

             * no one will look at it until hdev is unlocked.

             */

            status = 0;

            /* We mustn't add new devices if the parent hub has

             * been disconnected; we would race with the

             * recursively_mark_NOTATTACHED() routine.

             */

            spin_lock_irq(&device_state_lock);

            if (hdev->state == USB_STATE_NOTATTACHED)

                status = -ENOTCONN;

            else

                hdev->children[port1-1] = udev;

            spin_unlock_irq(&device_state_lock);

            /* Run it through the hoops (find a driver, etc) */

            if (!status) {

                status = usb_new_device(udev);

                if (status) {

                    spin_lock_irq(&device_state_lock);

                    hdev->children[port1-1] = NULL;

                    spin_unlock_irq(&device_state_lock);

                }

            }

            if (status)

                goto loop_disable;

            status = hub_power_remaining(hub);

            if (status)

                dev_dbg(hub_dev, "%dmA power budget left\n", status);

            return;

    loop_disable:

            hub_port_disable(hub, port1, 1);

    loop:

            ep0_reinit(udev);

            release_address(udev);

            usb_put_dev(udev);

            if ((status == -ENOTCONN) || (status == -ENOTSUPP))

                break;

        }

    如果端口隐定处于连接状态,那就需要连接端口下的设备了.首先看到的是一个for循环,是用来配置设备的两种方式.我们知道,在配置设备的时候,首先要去取设备的描述符,这个过程是在ep0上完成的.而这个ep0支持的最大传输出数据又是在设备描述符的bMaxPacketSize0中所定义的.

    因此就对应有两种处理方式:

    第一种是传输8个字节,取得描述符的前面一部份,从而就可以取得bMaxPacketSize0.此后再reset设备,再根据这个bMaxPacketSize0的长度去取它的设备描述符.

    第二种是一次传输64字节,取得设备描述符的bMaxPacketSize0字段

    关于这两种方式的描述,详见fudan_abc的<< Linux那些事儿之我是Hub>>.

    有关这个for循环的作用就解释到这里.

    在这段代码里,它首先分配一个usb_dev的结构,然后将其置为USB_STATE_POWERED状态.接着,为设备指定一个地址.

    然后就调用hub_port_init()对这个usb_dev结构进行一系的初始化,在这个函数中会处理:Get_Description,Set_address.等操作,这个函数接下来我们再详细分析.

    接着,将分配的struct usb_dev结构跟他的父结构关联起来,也就是说添加到它的父结构的usb_dev-> children[]数组.

    最后再调用usb_new_device()来取这个设备的配置项.这个函数我们在分析UHCI的时候已经分析过了.

    中间是关于一些电流的判断处理,这部份比较简单,自行查看就可以看懂,这里不再分析.

    注意,这里在分配usb_dev结构的时候,跟root hub是不相同的,如下示:

        udev = usb_alloc_dev(hdev, hdev->bus, port1)

    在为root hub分配struct usb_dev的时候,它的第一个参数,也就是它的父结点是为NULL.

    我们来观察一下它在sysfs中的命名方式:

    如下所示:

    在没有插入U盘之前:

    [root@localhost devices]# pwd

    /sys/bus/usb/devices

    [root@localhost devices]# ls

    1-0:1.0  usb1

    [root@localhost devices]#

    插入U盘之后:

    [root@localhost devices]# ls

    1-0:1.0  1-1  1-1:1.0  usb1

    增加的两个目是:

    1-1和1-1:1.0

    表示,U盘对应的设备目录是1-1.结合之前UHCI分析中,对usb_alloc_dev()应该很容易理解.

    1-1:1.0 :只有这样的目录,表示该U盘只有一个接口,当前选取的是第0号设置项.

    done:

        hub_port_disable(hub, port1, 1);

        if (hcd->driver->relinquish_port && !hub->hdev->parent)

            hcd->driver->relinquish_port(hcd, port1);

    }

    Done标号是对应上述处理失败的处理,它禁用掉该端口(因为该端口没有连接设备或者是端口上的设备配置失败),如果是root hub,且USB控制器器驱动中又定义了relinquish_port.调用它.

    照例,还是分析一下这个函数中涉及到的重要的子函数.

    第一个要分析的函数是choose_address()

    该函数用来为设备选择一个地址,代码如下所示:

    static void choose_address(struct usb_device *udev)

    {

        int     devnum;

        struct usb_bus  *bus = udev->bus;

        /* If khubd ever becomes multithreaded, this will need a lock */

        /* Try to allocate the next devnum beginning at bus->devnum_next. */

    //从bus->devnum_next开始找到一个末被使用的位

        devnum = find_next_zero_bit(bus->devmap.devicemap, 128,

                bus->devnum_next);

        //如果搜索到了最末尾,(128是不能被占用的),则从1起开始搜索

        if (devnum >= 128)

            devnum = find_next_zero_bit(bus->devmap.devicemap, 128, 1);

        //更新bus->devnum_next

        bus->devnum_next = ( devnum >= 127 ? 1 : devnum + 1);

        //如果找到了合适位,将该位设为占用,然后更新udev->devnum为找到的设备号

        if (devnum < 128) {

            set_bit(devnum, bus->devmap.devicemap);

            udev->devnum = devnum;

        }

    }

    这个函数的原理我们在之前说过了多次,它是到所属的usb bus的bus->devmap中找到没有使用的那一位.在这里设置bus->devnum_next项是一个搜索的优化,它不必每次都从第 1位起开始搜索.最后将找到的值存放在udev->devnum中.

    第二个要分析的函数是hub_port_disable().

    这个函数将hub对应的端口禁用,代码如下:

    static int hub_port_disable(struct usb_hub *hub, int port1, int set_state)

    {

        struct usb_device *hdev = hub->hdev;

        int ret = 0;

        //将接在该端口下的设备设为末连接

        if (hdev->children[port1-1] && set_state)

            usb_set_device_state(hdev->children[port1-1],

                    USB_STATE_NOTATTACHED);

        //发送enable 的Clear_Feature请求.

        if (!hub->error)

            ret = clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE);

        if (ret)

            dev_err(hub->intfdev, "cannot disable port %d (err = %d)\n",

                    port1, ret);

        return ret;

    }

    该函数的逻辑很简单,就是该端点下的联接设备断开,如果端口有设备连接的话.然后清除端口的enable.

    第三个要分析的函数是hub_port_init().

    将它列到最后,并不是因为它最轻微,而是因为它太复杂.^_^

    代码分段分析如下:

    static int

    hub_port_init (struct usb_hub *hub, struct usb_device *udev, int port1,

            int retry_counter)

    {

        static DEFINE_MUTEX(usb_address0_mutex);

        struct usb_device   *hdev = hub->hdev;

        int         i, j, retval;

        unsigned        delay = HUB_SHORT_RESET_TIME;

        enum usb_device_speed   oldspeed = udev->speed;

        char            *speed, *type;

        int         devnum = udev->devnum;

        /* root hub ports have a slightly longer reset period

         * (from USB 2.0 spec, section 7.1.7.5)

         */

         //设置port 的重置等待时间

        if (!hdev->parent) {

            delay = HUB_ROOT_RESET_TIME;

            if (port1 == hdev->bus->otg_port)

                hdev->bus->b_hnp_enable = 0;

        }

        /* Some low speed devices have problems with the quick delay, so */

        /*  be a bit pessimistic with those devices. RHbug #23670 */

        if (oldspeed == USB_SPEED_LOW)

            delay = HUB_LONG_RESET_TIME;

        mutex_lock(&usb_address0_mutex);

        /* Reset the device; full speed may morph to high speed */

        //将port reset

        retval = hub_port_reset(hub, port1, udev, delay);

        if (retval < 0)     /* error or disconnect */

            goto fail;

                    /* success, speed is known */

        retval = -ENODEV;

        //在设备之前的设速已经确定的情况下

        //如果设备的速度发生了改变,肯定是发生了错误

        if (oldspeed != USB_SPEED_UNKNOWN && oldspeed != udev->speed) {

            dev_dbg(&udev->dev, "device reset changed speed!\n");

            goto fail;

        }

        oldspeed = udev->speed;

    首先为端口重置选择一个合适的延时,即在这个延时过后,端口的Reset应该完成了.usb2.0 spec上规定,root hub的延时值是50ms,高速设备是10ms,而低速设备是100ms.从代码上看,这个延时都是从udev参数中来的,这个参数就是表示在端口上连接的设备.其实,所谓的Reset端口,就是Reset端口上连接的设备.

    由于我们现在要对这个设备进行配置,因此,先将它复原成初始值.

    另外,如果重置之后,设备的speed发生了变化,这肯定是错误的.

        /* USB 2.0 section 5.5.3 talks about ep0 maxpacket ...

         * it's fixed size except for full speed devices.

         * For Wireless USB devices, ep0 max packet is always 512 (tho

         * reported as 0xff in the device descriptor). WUSB1.0[4.8.1].

         */

        switch (udev->speed) {

        case USB_SPEED_VARIABLE:    /* fixed at 512 */

            udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(512);

            break;

        case USB_SPEED_HIGH:        /* fixed at 64 */

            udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);

            break;

        case USB_SPEED_FULL:        /* 8, 16, 32, or 64 */

            /* to determine the ep0 maxpacket size, try to read

             * the device descriptor to get bMaxPacketSize0 and

             * then correct our initial guess.

             */

            udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);

            break;

        case USB_SPEED_LOW:     /* fixed at 8 */

            udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(8);

            break;

        default:

            goto fail;

        }

    根据设备的speed来设定ep0的MaxPacketSize.这个只是spec上规定的值.另外对于Full Speed的设来说,它的MaxPacketSize有四种情况,即8.16.32和64实际的值要在设备描述符的bMaxPacketSize0字段才能知道.

        type = "";

        switch (udev->speed) {

        case USB_SPEED_LOW: speed = "low";  break;

        case USB_SPEED_FULL:    speed = "full"; break;

        case USB_SPEED_HIGH:    speed = "high"; break;

        case USB_SPEED_VARIABLE:

                    speed = "variable";

                    type = "Wireless ";

                    break;

        default:        speed = "?";    break;

        }

        dev_info (&udev->dev,

              "%s %s speed %sUSB device using %s and address %d\n",

              (udev->config) ? "reset" : "new", speed, type,

              udev->bus->controller->driver->name, devnum);

    这段代码无关紧要,只是打印出了一个Debug信息,

        /* Set up TT records, if needed  */

        if (hdev->tt) {

            udev->tt = hdev->tt;

            udev->ttport = hdev->ttport;

        } else if (udev->speed != USB_SPEED_HIGH

                && hdev->speed == USB_SPEED_HIGH) {

            udev->tt = &hub->tt;

            udev->ttport = port1;

        }

        /* Why interleave GET_DESCRIPTOR and SET_ADDRESS this way?

         * Because device hardware and firmware is sometimes buggy in

         * this area, and this is how Linux has done it for ages.

         * Change it cautiously.

         *

         * NOTE:  If USE_NEW_SCHEME() is true we will start by issuing

         * a 64-byte GET_DESCRIPTOR request.  This is what Windows does,

         * so it may help with some non-standards-compliant devices.

         * Otherwise we start with SET_ADDRESS and then try to read the

         * first 8 bytes of the device descriptor to get the ep0 maxpacket

         * value.

         */

        for (i = 0; i < GET_DESCRIPTOR_TRIES; (++i, msleep(100))) {

            if (USE_NEW_SCHEME(retry_counter)) {

                struct usb_device_descriptor *buf;

                int r = 0;

    #define GET_DESCRIPTOR_BUFSIZE  64

                buf = kmalloc(GET_DESCRIPTOR_BUFSIZE, GFP_NOIO);

                if (!buf) {

                    retval = -ENOMEM;

                    continue;

                }

                /* Retry on all errors; some devices are flakey.

                 * 255 is for WUSB devices, we actually need to use

                 * 512 (WUSB1.0[4.8.1]).

                 */

                for (j = 0; j < 3; ++j) {

                    buf->bMaxPacketSize0 = 0;

                    r = usb_control_msg(udev, usb_rcvaddr0pipe(),

                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,

                        USB_DT_DEVICE << 8, 0,

                        buf, GET_DESCRIPTOR_BUFSIZE,

                        USB_CTRL_GET_TIMEOUT);

                    switch (buf->bMaxPacketSize0) {

                    case 8: case 16: case 32: case 64: case 255:

                        if (buf->bDescriptorType ==

                                USB_DT_DEVICE) {

                            r = 0;

                            break;

                        }

                        /* FALL THROUGH */

                    default:

                        if (r == 0)

                            r = -EPROTO;

                        break;

                    }

                    if (r == 0)

                        break;

                }

                udev->descriptor.bMaxPacketSize0 =

                        buf->bMaxPacketSize0;

                kfree(buf);

                retval = hub_port_reset(hub, port1, udev, delay);

                if (retval < 0)     /* error or disconnect */

                    goto fail;

                if (oldspeed != udev->speed) {

                    dev_dbg(&udev->dev,

                        "device reset changed speed!\n");

                    retval = -ENODEV;

                    goto fail;

                }

                if (r) {

                    dev_err(&udev->dev, "device descriptor "

                            "read/%s, error %d\n",

                            "64", r);

                    retval = -EMSGSIZE;

                    continue;

                }

    #undef GET_DESCRIPTOR_BUFSIZE

            }

            for (j = 0; j < SET_ADDRESS_TRIES; ++j) {

                retval = hub_set_address(udev, devnum);

                if (retval >= 0)

                    break;

                msleep(200);

            }

            if (retval < 0) {

                dev_err(&udev->dev,

                    "device not accepting address %d, error %d\n",

                    devnum, retval);

                goto fail;

            }

            /* cope with hardware quirkiness:

             *  - let SET_ADDRESS settle, some device hardware wants it

             *  - read ep0 maxpacket even for high and low speed,

             */

            msleep(10);

            if (USE_NEW_SCHEME(retry_counter))

                break;

            retval = usb_get_device_descriptor(udev, 8);

            if (retval < 8) {

                dev_err(&udev->dev, "device descriptor "

                        "read/%s, error %d\n",

                        "8", retval);

                if (retval >= 0)

                    retval = -EMSGSIZE;

            } else {

                retval = 0;

                break;

            }

        }

    这个for循环是一个很重要的操作,首先,我们来看一下USE_NEW_SCHEME宏的定义.如下示:

    ((i) / 2 == old_scheme_first), old_scheme_first默认为0,也就是说,当i为0,1的时候,这个宏会返回1.那就是说,对于之前分析的两种机制,每种机制尝试两次.

    区分一下这两种机制的不同:

    对于第一种机制,它先用64的buffer去取设备描述符.而第二种机制,是以长度8的缓存区,取设备描述符的前半部份.

    另外,第一种机制,去取设备描述符之前没有设置设备的地址,因此使用地址0来表示设备的地址,在代码中,用usb_rcvaddr0pipe()表示.而在第二种机制中,它在取设备描述符之前已经设置了设备的地址.

    疑问:可能有人就有这样的疑问,既然地址0可以表示没有设置地址的设备地址,那如果有多个没有set address的设备,这个地址0到底是表示那个设备呢?

    实际上,从代码上看,Linux是每打开一个hub的端口就初始连在这个端口上的设备.之后这连接上的设备设置好地址之后再打开hub的另外的端口进行配置,因此,在同一条usb bus上,不会出现多个末配置的活动设备.

        if (retval)

            goto fail;

        i = udev->descriptor.bMaxPacketSize0 == 0xff?

            512 : udev->descriptor.bMaxPacketSize0;

        if (le16_to_cpu(udev->ep0.desc.wMaxPacketSize) != i) {

            if (udev->speed != USB_SPEED_FULL ||

                    !(i == 8 || i == 16 || i == 32 || i == 64)) {

                dev_err(&udev->dev, "ep0 maxpacket = %d\n", i);

                retval = -EMSGSIZE;

                goto fail;

            }

            dev_dbg(&udev->dev, "ep0 maxpacket = %d\n", i);

            udev->ep0.desc.wMaxPacketSize = cpu_to_le16(i);

            ep0_reinit(udev);

        }

        retval = usb_get_device_descriptor(udev, USB_DT_DEVICE_SIZE);

        if (retval < (signed)sizeof(udev->descriptor)) {

            dev_err(&udev->dev, "device descriptor read/%s, error %d\n",

                "all", retval);

            if (retval >= 0)

                retval = -ENOMSG;

            goto fail;

        }

        retval = 0;

    fail:

        if (retval) {

            hub_port_disable(hub, port1, 0);

            udev->devnum = devnum;  /* for disconnect processing */

        }

        mutex_unlock(&usb_address0_mutex);

        return retval;

    }

    在上面获得的设备描述符的bMaxPacketSize0字段,也就是ep0的MaxPacketSize.但如果这个值不和我们之前根据 spec为ep0设定的MaxPacketSize值相等,且不是Full speed的话,就会有错误了.因为只有Full Speed的设备的ep0 的MaxPacketSize在spec上并没有一个明确的定义值.

    有了确定的ep0 的MaxPacketSize值,就可以取得完整的设备描述符了.

    第四个要分析的函数是hub_port_reset().

    这个函数将端口重置并等待端口重置完成.代码如下:

    static int hub_port_reset(struct usb_hub *hub, int port1,

                    struct usb_device *udev, unsigned int delay)

    {

        int i, status;

        /* Block EHCI CF initialization during the port reset.

         * Some companion controllers don't like it when they mix.

         */

        down_read(&ehci_cf_port_reset_rwsem);

        /* Reset the port */

        //尝试5次

        for (i = 0; i < PORT_RESET_TRIES; i++) {

            //发送Reset 的Set_Feature

            status = set_port_feature(hub->hdev,

                    port1, USB_PORT_FEAT_RESET);

            //发送错误

            if (status)

                dev_err(hub->intfdev,

                        "cannot reset port %d (err = %d)\n",

                        port1, status);

            else {

                //发送Clear_Feature成功,等待端口重置完成

                status = hub_port_wait_reset(hub, port1, udev, delay);

                if (status && status != -ENOTCONN)

                    dev_dbg(hub->intfdev,

                            "port_wait_reset: err = %d\n",

                            status);

            }

            /* return on disconnect or reset */

            switch (status) {

            //成功  

            case 0:

                /* TRSTRCY = 10 ms; plus some extra */

                msleep(10 + 40);

                udev->devnum = 0;   /* Device now at address 0 */

                /* FALL THROUGH */

            //端口没有连接   

            case -ENOTCONN:

            //要发送的设备不存在  

            case -ENODEV:

                clear_port_feature(hub->hdev,

                    port1, USB_PORT_FEAT_C_RESET);

                /* FIXME need disconnect() for NOTATTACHED device */

                usb_set_device_state(udev, status

                        ? USB_STATE_NOTATTACHED

                        : USB_STATE_DEFAULT);

                goto done;

            }

            dev_dbg (hub->intfdev,

                "port %d not enabled, trying reset again...\n",

                port1);

            //将延迟设至最长,再试一次

            delay = HUB_LONG_RESET_TIME;

        }

        dev_err (hub->intfdev,

            "Cannot enable port %i.  Maybe the USB cable is bad?\n",

            port1);

    done:

        up_read(&ehci_cf_port_reset_rwsem);

        return status;

    }

    这个函数的代码看清淅,首先将端口重置,然后等待端口重置完成.在成功返回或者是发错致命错误的时候就会在清除掉RESET Feature,设置设备状态之后返回.这个所谓的致命包括:

    1:发送Clear_Feature时,返回-ENODEV,表示设备不存在

    2:在hub_port_wait_reset()后返回的-ENOTCONN,表示端口上末连接设备.

    另外,在这里哆嗦的重复一句,只有在设备有这个Feature的时候,才能Clear_Feature.在上面的代码中,只有代码中,如果 Reset不成功,是不需要Clear USB_PORT_FEAT_C_RESET 这个Feature的.只有在已经设置成功的情况,才能将其Clear(-ENODEV的情况,无所谓,这个错误在submit urb前期就能测检出来,不会跟硬件交互,而-ENOTCONN则表示端口Reset完成,但尚末检测到连接设备,这种情况下,也是需要 Clear_Feature的).

    另外,里面还调用了一个子函数, hub_port_wait_reset().代码如下:

    static int hub_port_wait_reset(struct usb_hub *hub, int port1,

                    struct usb_device *udev, unsigned int delay)

    {

        int delay_time, ret;

        u16 portstatus;

        u16 portchange;

        //最长等待时间是500

        for (delay_time = 0;

                delay_time < HUB_RESET_TIMEOUT;

                delay_time += delay) {

            /* wait to give the device a chance to reset */

            msleep(delay);

            /* read and decode port status */

            ret = hub_port_status(hub, port1, &portstatus, &portchange);

            if (ret < 0)

                return ret;

            /* Device went away? */

            //端口已经没有连接了,说明连接的设备在某个时刻被拨下来了

            if (!(portstatus & USB_PORT_STAT_CONNECTION))

                return -ENOTCONN;

            /* bomb out completely if the connection bounced */

            //连接状态发生了改变,则说明连接状态不稳定.因为断开之后,再联上是需要重新配置的

            //退出

            if ((portchange & USB_PORT_STAT_C_CONNECTION))

                return -ENOTCONN;

            /* if we`ve finished resetting, then break out of the loop */

            //如果Reset已经完成,且端口处于enable状态,设置speed成员就可以返回了

            if (!(portstatus & USB_PORT_STAT_RESET) &&

                (portstatus & USB_PORT_STAT_ENABLE)) {

                if (hub_is_wusb(hub))

                    udev->speed = USB_SPEED_VARIABLE;

                else if (portstatus & USB_PORT_STAT_HIGH_SPEED)

                    udev->speed = USB_SPEED_HIGH;

                else if (portstatus & USB_PORT_STAT_LOW_SPEED)

                    udev->speed = USB_SPEED_LOW;

                else

                    udev->speed = USB_SPEED_FULL;

                return 0;

            }

            /* switch to the long delay after two short delay failures */

            //失败两次,将延时时间设为最长的时间

            if (delay_time >= 2 * HUB_SHORT_RESET_TIME)

                delay = HUB_LONG_RESET_TIME;

            dev_dbg (hub->intfdev,

                "port %d not reset yet, waiting %dms\n",

                port1, delay);

        }

        return -EBUSY;

    }

    注意到在上面为speed成员赋值的时候,出现了一个hub_is_wusb().该宏用来判断hcd是否是一个无线的USB主机控制器.如果 hcd 是一个无线的,那其下的所有设备的speed均为USB_SPEED_VARIABLE.这个是属于usb2.5 spec里面定义的.

    到这里,hub_thread()函数已经分析完了.它已经将hub下连接的所有新设备都初始化并添加进了设备模型.

    5.2.3:HUB中断URB传输完成的处理

    在之前分析中断URB初始化的时候,曾分析到,如果中断URB传输完成,就会调用hub_irq().在分析这个函数之前,我们先从spec上了解一下,对于hub的中断传输到底会传些什么样的东西:

    如下图所示:

    Bit0表示hub的连接状态发生了改变,而bit1~bitN表示的是各端口连接状态的改变.如果1表示改变,为0表示末改变.

    现在可以看该函数的代码了,如下:

    static void hub_irq(struct urb *urb)

    {

        struct usb_hub *hub = urb->context;

        int status = urb->status;

        int i;

        unsigned long bits;

        switch (status) {

        case -ENOENT:       /* synchronous unlink */

        case -ECONNRESET:   /* async unlink */

        case -ESHUTDOWN:    /* hardware going away */

            return;

        default:        /* presumably an error */

            /* Cause a hub reset after 10 consecutive errors */

            dev_dbg (hub->intfdev, "transfer --> %d\n", status);

            if ((++hub->nerrors < 10) || hub->error)

                goto resubmit;

            hub->error = status;

            /* FALL THROUGH */

        /* let khubd handle things */

        case 0:         /* we got data:  port status changed */

            bits = 0;

            for (i = 0; i < urb->actual_length; ++i)

                bits |= ((unsigned long) ((*hub->buffer)[i]))

                        << (i*8);

            hub->event_bits[0] = bits;

            break;

        }

        hub->nerrors = 0;

        /* Something happened, let khubd figure it out */

        kick_khubd(hub);

    resubmit:

        if (hub->quiescing)

            return;

        if ((status = usb_submit_urb (hub->urb, GFP_ATOMIC)) != 0

                && status != -ENODEV && status != -EPERM)

            dev_err (hub->intfdev, "resubmit --> %d\n", status);

    }

    从上面的代码可以看出,就将是设HUB中断传输的信息保存在hub->event_bits中,然后又将此URB再次提交,再次提交的结果是,可以轮询获得hub的状态,另外,还会调用kick_khubd().这样, hub_events()就又会调用,又可以处理HUB端口的状态改变.

    六:小结

    在本小结里,对HUB的处理过程做了一个详尽的分析,在这一节里,也了解到了USB的驱动架构以及USB设备的枚举过程.

    在下一节里,我们以特定的USB设备分例,来分析USB驱动程序的架构.

  • 相关阅读:
    BZOJ 1218: [HNOI2003]激光炸弹( 前缀和 + 枚举 )
    BZOJ 1878: [SDOI2009]HH的项链( BIT )
    BZOJ 1054: [HAOI2008]移动玩具( BFS )
    js-提取行间元素
    vim的三种模式的基本操作
    Linux的高级命令
    Linux的进阶命令
    Linux的基本命令
    Linux常见的文件目录结构
    js-操作属性
  • 原文地址:https://www.cnblogs.com/cute/p/2092637.html
Copyright © 2011-2022 走看看