zoukankan      html  css  js  c++  java
  • Noi2018 归途

    zz:https://blog.csdn.net/dreaming__ldx/article/details/81106748

    对于样例2

    day   出发点   水位     ans
    1          5        1            0
    2          5        2            2
    3          4         2            3
    4         2        3             1

    以海拔为第一关键字对边进行从大到小的排序,然后修建kruskal重构树,这样就弄出了一颗以海拔为关键字的小根堆。然后对于每一棵子树,如果询问中的水位线是低于子树的根节点的,那么此时这棵子树中的所有叶子结点都是连通的。放到题中就是说这颗子树中任选一个点出发,到子树中的其它点都不需要花费。则它到1的实际开支为这些点中到1的最短路的最小值,这个最小值是在不考虑海平线的前提下,尽量走最短路径的权值。

    然后我们假设对于当前询问,我们找到了一个子树的根节点u,满足d[u]>p且d[fa[u]]<=p (d[i]代表i点海拔)且出发点v在子树中,这时从v出发可以直接抵达子树中的任意一个叶子结点。因此我们需要从众多叶子节点(即原图给的点)中选出一个距离1号点花费最小的。时间复杂度O(T*N*LogN)
    算法流程如下:
    我们首先要求出每个点到1号点的最小花费,这个直接dijstra+最短路预处理。然后是要建出kruskal重构树,再然后维护以每个点作为根节点时子树中距离1号点的最小花费,这个建完树后一个简单的dfs搞定。最后是如何找到点u,这时我们要让一个重要的算法登场:倍增算法。直接加上点权>p的限制在树上倍增即可。

    #include<bits/stdc++.h>
    #define N 400005
    #define M 800005
    using namespace std;
    inline int read(){
    	int ans=0;
    	char ch=getchar();
    	while(!isdigit(ch))ch=getchar();
    	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    	return ans;
    }
    inline void write(int x)
    {
    	if(x>9)write(x/10);
    	putchar(x%10+'0');
    }
    int n,m,T,q,k,s,vis[N],first[N<<1],head[N],cntx=0,d[N],dep[N],f[N][20],fa[N<<1],lastans=0,totx=0;
    struct Node、
    {
    	int u,v,l,a;
    }e[M],p[N<<1];
    struct edge
    {
    	int v,next;
    }tr[M<<1];
    struct node
    {
    	int v,next,w;
    }t[M];
    struct heap
    {
    	int u,v;
    };
    inline bool operator<(heap a,heap b){return a.v>b.v;}
    inline void dijstra(int s=1) //找出每个点到s的最短路 
    {
    	memset(vis,false,sizeof(vis));
    	memset(d,0x3f,sizeof(d));
    	priority_queue<heap>q;
    	d[s]=0;
    	q.push((heap){s,d[s]});
    	while(!q.empty()){
    		heap x=q.top();
    		q.pop();
    		if(vis[x.u])continue;
    		vis[x.u]=true;
    		for(int i=head[x.u];i;i=t[i].next){
    			int v=t[i].v;
    			if(vis[v])continue;
    			if(d[v]>d[x.u]+t[i].w){
    				d[v]=d[x.u]+t[i].w
    				;
    				q.push((heap){v,d[v]});
    			}
    		}
    	}
    	for(int i=1;i<=n;++i)
    	   p[i].l=d[i];//结果放到p[i].l中 
    }
    inline bool cmp(Node a,Node b)
    {
    	return a.a>b.a;
    }
    inline int find(int x)
    {
    	return x==fa[x]?fa[x]:fa[x]=find(fa[x]);
    }
    inline void add(int u,int v)//重构树是用来连边的 
    {
    	tr[++cntx].v=v;
    	tr[cntx].next=first[u];
    	first[u]=cntx;
    }
    inline void addx(int u,int v,int w)//原图连边用的,带权 
    {
    	t[++totx].v=v;
    	t[totx].next=head[u];
    	t[totx].w=w;
    	head[u]=totx;
    }
    inline void dfs(int u,int pa)
    {
    	dep[u]=dep[pa]+1,f[u][0]=pa;
    	for(int i=1;i<=19;++i)f[u][i]=f[f[u][i-1]][i-1];
    	for(int i=first[u];i;i=tr[i].next)
    	{
    		int v=tr[i].v;
    		dfs(v,u);
    		p[u].l=min(p[u].l,p[v].l);
    		//u,v是相连的,也就是说如果这边的海拔线高于规定的话,则从u,v之间可以直达
    		//于是要选两者的最小值
    		//u要么与两个叶子点相连,要么与一个叶子点一个新增点相连
    		//最终u为以u为根的子树中,所有点到1的最短路
    		//也就是说如果能走到u点,则此时p[u].l就是其子树中某个点到1的最短路 
    	}
    }
    inline int query(int x,int y)
    {
    	for(int i=19;i>=0;--i)
    	if(dep[x]-(1<<i)>0&&p[f[x][i]].a>y)
    	 //一直向上跳,只要所跳的点海拔高于规定值. 注意是高于,不是高于等于  
    	   x=f[x][i];
    	return p[x].l;
    }
    inline void kruskal()
    {
    	int tot=0,cnt=n;
    	for(int i=1;i<=(n<<1);++i)
    	fa[i]=i;
    	sort(e+1,e+m+1,cmp);
    	for(int i=1;i<=m;++i)
    	{
    		int u=e[i].u,v=e[i].v;
    		int fx=find(u),fy=find(v);
    		if(fx!=fy){
    			add(++cnt,fx);
    			add(cnt,fy);
    			fa[fx]=cnt;
    			fa[fy]=cnt;
    			p[cnt].a=e[i].a;
    			++tot;
    		}
    		if(tot==n-1)break;
    	}
    	dfs(cnt,0);
    	while(q--)
    	{
    		int x=(k*lastans+read()-1)%n+1,y=(k*lastans+read())%(s+1);
    		write(lastans=query(x,y));
    		puts("");
    	}
    }
    int main(){
    	T=read();
    	while(T--){
    		lastans=0,n=read(),m=read();
    		memset(e,0,sizeof(e)),cntx=0,totx=0;
    		memset(first,0,sizeof(first));
    		memset(head,0,sizeof(head));
    		memset(f,0,sizeof(f));
    		for(int i=1;i<=m;++i)
    		e[i].u=read(),e[i].v=read(),e[i].l=read(),
    		e[i].a=read(),addx(e[i].u,e[i].v,e[i].l),addx(e[i].v,e[i].u,e[i].l);
    		for(int i=n+1;i<=(n<<1);++i) //注意是2*n个点,因为要新增n-1个点 
    		p[i].l=0x3f3f3f3f;
    		dijstra();
    		q=read(),k=read(),s=read();
    		kruskal();
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    mapxtreme2005 改变选中的图元样式
    hdu 3044 Dog and dog
    jdoj 1008 最短路径问题 代码及分析
    jdoj 1402 特殊的数 代码及分析
    poj 1125 Stockbroker Grapevine 代码及分析
    hdu 1063 Exponentiation代码及分析
    堆和栈的区别 (转贴)
    文本长度控制
    一点设计上的创意,有机会就去实现
    IECookiesView (Cookies查看工具)绿色汉化版 V1.74
  • 原文地址:https://www.cnblogs.com/cutemush/p/11787615.html
Copyright © 2011-2022 走看看