zoukankan      html  css  js  c++  java
  • tensorflow2.0——可训练变量

            

    import tensorflow as tf
    import numpy as np
    
    ###############     tf.Variable(initial value,dtype)    ###############
    
    print('############数字为参数###########')
    a = tf.Variable(3)
    print('数字为参数a:',a)
    print('############列表为参数###########')
    a = tf.Variable([1,6])
    print('列表为参数a:',a)
    print('############np数组为参数###########')
    a = tf.Variable(np.array([3,6.0]))
    print('np数组为参数a:',a)
    print('############张量为参数###########')
    a = tf.Variable(tf.constant([[1,1],[2,2],[2,3]]))
    print('张量为参数a:',a)
    print('a.trainable:',a.trainable)           #   该变量是否可以被训练
    print('type(a):',type(a))
    print()
    ###############     对象名.assign()    ###############
    a = tf.Variable([1,2,3])
    print('原可训练变量a:',a)
    a.assign([4,2,3])                       #   将可训练变量改变
    print('改变后的a:',a)
    a.assign_add([4,0,5])                   #   将变量相加
    print('相加后的变量a:',a)
    a.assign_sub([8,8,8])                   #   将变量相减
    print('相减后的变量a:',a)
    print()
    ###############     isinstance()    ###############
    a = tf.constant(5)
    b = tf.Variable(5)
    print('a:{}
    b{}'.format(a,b))
    print("isinstance(a,tf.Tensor):{},isinstance(a,tf.Variable):{}".format(isinstance(a,tf.Tensor),isinstance(a,tf.Variable)))
    print("isinstance(b,tf.Tensor):{},isinstance(b,tf.Variable):{}".format(isinstance(b,tf.Tensor),isinstance(b,tf.Variable)))
  • 相关阅读:
    BZOJ1143: [CTSC2008]祭祀river
    接口自动化测试平台-接入持续集成jenkins
    mac OS npm 安装/卸载失败 权限问题解决方案
    初入React源码(一)
    初入React源码(一)
    mac OS git关联github
    重识TCP/IP协议族与HTTP基础
    重识TCP/IP协议族与HTTP基础
    Visual Studio Code mac OS 安装 中文简体语言包
    C#加密类
  • 原文地址:https://www.cnblogs.com/cxhzy/p/13398418.html
Copyright © 2011-2022 走看看