zoukankan      html  css  js  c++  java
  • How to Initialize Neural Networks in PyTorch with Pretrained Nets in TensorFlow or Theano

    First convert network weights and biases to numpy arrays. Note if you want to load a pre-trained network with Keras, you must define it of the same network structure with Keras.

    Note which backend of Keras you use. I install Keras with TensorFlow backend but the VGGnet I'm going to replicate has Theano order.

    from keras.models import Sequential
    from keras.layers.core import Flatten, Dense, Dropout
    from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
    from keras.optimizers import SGD
    import numpy as np
    
    def VGG_16(weights_path=None):
        model = Sequential()
        model.add(ZeroPadding2D((1,1),input_shape=(3,224,224),dim_ordering="th"))
        model.add(Convolution2D(64, 3, 3, activation='relu',dim_ordering="th",name="conv1"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(64, 3, 3, activation='relu',dim_ordering="th",name="conv2"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(128, 3, 3, activation='relu',dim_ordering="th",name="conv3"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(128, 3, 3, activation='relu',dim_ordering="th",name="conv4"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(Flatten())
        model.add(Dense(4096, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(4096, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(1000, activation='softmax'))
    
        if weights_path:
            model.load_weights(weights_path)
    
        return model
    
    
    if __name__ == '__main__':
        weights_path="vgg16_weights.h5"
        model=VGG_16(weights_path=weights_path)
        weight1,bias1=model.get_layer(name="conv1").get_weights()
        weight2,bias2=model.get_layer(name="conv2").get_weights()
        weight3,bias3=model.get_layer(name="conv3").get_weights()
        weight4,bias4=model.get_layer(name="conv4").get_weights()
        np.save("weight1", weight1)
        np.save("weight2", weight2)
        np.save("weight3", weight3)
        np.save("weight4", weight4)
        np.save("bias1", bias1)
        np.save("bias2", bias2)
        np.save("bias3", bias3)
        np.save("bias4", bias4)
        # the extension is .npy
        print(weight1.shape)
        print(bias1.shape)
        lol=np.load("bias1.npy")
        print(lol.shape)
    

    Then initialize the Pytorch network with saved numpy arrays.

    import torch.nn as nn
    import numpy as np
    is_cuda=torch.cuda.is_available() class vgglownet(nn.Module): def __init__(self): super(vgglownet, self).__init__() self.conv1=nn.Conv2d( in_channels=3,out_channels=64,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.conv2=nn.Conv2d( in_channels=64,out_channels=64,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.maxpool1=nn.MaxPool2d( kernel_size=(2,2) ) # stride – the stride of the window. Default value is kernel_size self.conv3=nn.Conv2d( in_channels=64,out_channels=128,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.conv4=nn.Conv2d( in_channels=128,out_channels=128,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.maxpool2=nn.MaxPool2d( kernel_size=(2,2) ) def forward(self,inputs): x=self.conv1(inputs) x=self.conv2(x) x=self.maxpool1(x) x=self.conv3(x) x=self.conv4(x) x=self.maxpool2(x) return x if __name__ == '__main__': weight1 = np.load("weight1.npy") bias1 = np.load("bias1.npy") weight2 = np.load("weight2.npy") bias2 = np.load("bias2.npy") weight3 = np.load("weight3.npy") bias3 = np.load("bias3.npy") weight4 = np.load("weight4.npy") bias4 = np.load("bias4.npy")
    # weight1=weight1.transpose(0,3,1,2) if in tf order # weight2=weight2.transpose(0,3,1,2) # weight3=weight3.transpose(0,3,1,2) # weight4=weight4.transpose(0,3,1,2) net=vgglownet() net.conv1.weight = nn.Parameter(torch.from_numpy(weight1)) net.conv1.bias = nn.Parameter(torch.from_numpy(bias1)) net.conv2.weight = nn.Parameter(torch.from_numpy(weight2)) net.conv2.bias = nn.Parameter(torch.from_numpy(bias2)) net.conv3.weight = nn.Parameter(torch.from_numpy(weight3)) net.conv3.bias = nn.Parameter(torch.from_numpy(bias3)) net.conv4.weight = nn.Parameter(torch.from_numpy(weight4)) net.conv4.bias = nn.Parameter(torch.from_numpy(bias4)) torch.save(net,"trained_nets/vgglownetcpu.pt") torch.save(net.cuda(),"trained_nets/vgglownet.pt")

      

  • 相关阅读:
    Python 中的map函数,filter函数,reduce函数
    编程中,static的用法详解
    C++ list容器系列功能函数详解
    python中的configparser类
    310实验室OTL问题----将写好的C++文件转换成Python文件,并将数据可视化
    310实验室OTL问题
    常量指针、指针常量、指向常量的指针常量
    Iterator迭代器的相关问题
    struts2中action中的通配符
    struts2访问servlet API
  • 原文地址:https://www.cnblogs.com/cxxszz/p/8583184.html
Copyright © 2011-2022 走看看