zoukankan      html  css  js  c++  java
  • How to Initialize Neural Networks in PyTorch with Pretrained Nets in TensorFlow or Theano

    First convert network weights and biases to numpy arrays. Note if you want to load a pre-trained network with Keras, you must define it of the same network structure with Keras.

    Note which backend of Keras you use. I install Keras with TensorFlow backend but the VGGnet I'm going to replicate has Theano order.

    from keras.models import Sequential
    from keras.layers.core import Flatten, Dense, Dropout
    from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
    from keras.optimizers import SGD
    import numpy as np
    
    def VGG_16(weights_path=None):
        model = Sequential()
        model.add(ZeroPadding2D((1,1),input_shape=(3,224,224),dim_ordering="th"))
        model.add(Convolution2D(64, 3, 3, activation='relu',dim_ordering="th",name="conv1"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(64, 3, 3, activation='relu',dim_ordering="th",name="conv2"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(128, 3, 3, activation='relu',dim_ordering="th",name="conv3"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(128, 3, 3, activation='relu',dim_ordering="th",name="conv4"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(256, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(ZeroPadding2D((1,1),dim_ordering="th"))
        model.add(Convolution2D(512, 3, 3, activation='relu',dim_ordering="th"))
        model.add(MaxPooling2D((2,2), strides=(2,2),dim_ordering="th"))
    
        model.add(Flatten())
        model.add(Dense(4096, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(4096, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(1000, activation='softmax'))
    
        if weights_path:
            model.load_weights(weights_path)
    
        return model
    
    
    if __name__ == '__main__':
        weights_path="vgg16_weights.h5"
        model=VGG_16(weights_path=weights_path)
        weight1,bias1=model.get_layer(name="conv1").get_weights()
        weight2,bias2=model.get_layer(name="conv2").get_weights()
        weight3,bias3=model.get_layer(name="conv3").get_weights()
        weight4,bias4=model.get_layer(name="conv4").get_weights()
        np.save("weight1", weight1)
        np.save("weight2", weight2)
        np.save("weight3", weight3)
        np.save("weight4", weight4)
        np.save("bias1", bias1)
        np.save("bias2", bias2)
        np.save("bias3", bias3)
        np.save("bias4", bias4)
        # the extension is .npy
        print(weight1.shape)
        print(bias1.shape)
        lol=np.load("bias1.npy")
        print(lol.shape)
    

    Then initialize the Pytorch network with saved numpy arrays.

    import torch.nn as nn
    import numpy as np
    is_cuda=torch.cuda.is_available() class vgglownet(nn.Module): def __init__(self): super(vgglownet, self).__init__() self.conv1=nn.Conv2d( in_channels=3,out_channels=64,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.conv2=nn.Conv2d( in_channels=64,out_channels=64,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.maxpool1=nn.MaxPool2d( kernel_size=(2,2) ) # stride – the stride of the window. Default value is kernel_size self.conv3=nn.Conv2d( in_channels=64,out_channels=128,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.conv4=nn.Conv2d( in_channels=128,out_channels=128,kernel_size=(3,3),stride=(1,1),padding=(1,1) ) self.maxpool2=nn.MaxPool2d( kernel_size=(2,2) ) def forward(self,inputs): x=self.conv1(inputs) x=self.conv2(x) x=self.maxpool1(x) x=self.conv3(x) x=self.conv4(x) x=self.maxpool2(x) return x if __name__ == '__main__': weight1 = np.load("weight1.npy") bias1 = np.load("bias1.npy") weight2 = np.load("weight2.npy") bias2 = np.load("bias2.npy") weight3 = np.load("weight3.npy") bias3 = np.load("bias3.npy") weight4 = np.load("weight4.npy") bias4 = np.load("bias4.npy")
    # weight1=weight1.transpose(0,3,1,2) if in tf order # weight2=weight2.transpose(0,3,1,2) # weight3=weight3.transpose(0,3,1,2) # weight4=weight4.transpose(0,3,1,2) net=vgglownet() net.conv1.weight = nn.Parameter(torch.from_numpy(weight1)) net.conv1.bias = nn.Parameter(torch.from_numpy(bias1)) net.conv2.weight = nn.Parameter(torch.from_numpy(weight2)) net.conv2.bias = nn.Parameter(torch.from_numpy(bias2)) net.conv3.weight = nn.Parameter(torch.from_numpy(weight3)) net.conv3.bias = nn.Parameter(torch.from_numpy(bias3)) net.conv4.weight = nn.Parameter(torch.from_numpy(weight4)) net.conv4.bias = nn.Parameter(torch.from_numpy(bias4)) torch.save(net,"trained_nets/vgglownetcpu.pt") torch.save(net.cuda(),"trained_nets/vgglownet.pt")

      

  • 相关阅读:
    ORACLE字符集基础知识
    Outlook 2013 在邮件里面点击超链接时弹出“组织策略阻止我们为您完成此操作”
    Apache Kafka: 优化部署的10个最佳实践
    经济学人使用Golang构建微服务历程回顾
    如何做自己的服务监控?spring boot 2.x服务监控揭秘
    web框架的前生今世--从servlet到spring mvc到spring boot
    如何做自己的服务监控?spring boot 1.x服务监控揭秘
    手机上不了网
    Cross-Browser, Event-based, Element Resize Detection(转)
    迷你MVVM框架 avalonjs 组件编写指南
  • 原文地址:https://www.cnblogs.com/cxxszz/p/8583184.html
Copyright © 2011-2022 走看看