转自:http://blog.csdn.net/androidlushangderen/article/details/41278351
花了大约1周的时间,终于把MapReduce的5大阶段的源码学习结束掉了,收获不少,就算本人对Hadoop学习的一个里程碑式的纪念吧。今天花了一点点的时间,把MapReduce的最后一个阶段,输出OutputFormat给做了分析,这个过程跟InputFormat刚刚好是对着干的,二者极具对称性。为什么这么说呢,待我一一分析。
OutputFormat过程的作用就是定义数据key-value的输出格式,给你处理好后的数据,究竟以什么样的形式输出呢,才能让下次别人拿到这个文件的时候能准确的提取出里面的数据。这里,我们撇开这个话题,仅仅我知道的一些定义的数据格式的方法,比如在Redis中会有这样的设计:
[key-length][key][value-length][value][key-length][key][value-length][value]...
或者说不一定非要省空间,直接搞过分隔符
[key] [value]
[key] [value]
[key] [value]
.....
这样逐行读取,再以空格隔开,取出里面的键值对,这么做简单是简单,就是不紧凑,空间浪费得有点多。在MapReduce的OutputFormat的有种格式用的就是这种方式。
首先必须得了解OutputFormat里面到底有什么东西:
- public interface OutputFormat<K, V> {
- /**
- * Get the {@link RecordWriter} for the given job.
- * 获取输出记录键值记录
- *
- * @param ignored
- * @param job configuration for the job whose output is being written.
- * @param name the unique name for this part of the output.
- * @param progress mechanism for reporting progress while writing to file.
- * @return a {@link RecordWriter} to write the output for the job.
- * @throws IOException
- */
- RecordWriter<K, V> getRecordWriter(FileSystem ignored, JobConf job,
- String name, Progressable progress)
- throws IOException;
- /**
- * Check for validity of the output-specification for the job.
- *
- * <p>This is to validate the output specification for the job when it is
- * a job is submitted. Typically checks that it does not already exist,
- * throwing an exception when it already exists, so that output is not
- * overwritten.</p>
- * 作业运行之前进行的检测工作,例如配置的输出目录是否存在等
- *
- * @param ignored
- * @param job job configuration.
- * @throws IOException when output should not be attempted
- */
- void checkOutputSpecs(FileSystem ignored, JobConf job) throws IOException;
- }
很简单的2个方法,RecordWriter比较重要,后面的key-value的写入操作都是根据他来完成的。但是他是一个接口,在MapReduce中,我们用的最多的他的子类是FileOutputFormat:
- /** A base class for {@link OutputFormat}. */
- public abstract class FileOutputFormat<K, V> implements OutputFormat<K, V> {
他是一个抽象类,但是实现了接口中的第二个方法checkOutputSpecs()方法:
- public void checkOutputSpecs(FileSystem ignored, JobConf job)
- throws FileAlreadyExistsException,
- InvalidJobConfException, IOException {
- // Ensure that the output directory is set and not already there
- Path outDir = getOutputPath(job);
- if (outDir == null && job.getNumReduceTasks() != 0) {
- throw new InvalidJobConfException("Output directory not set in JobConf.");
- }
- if (outDir != null) {
- FileSystem fs = outDir.getFileSystem(job);
- // normalize the output directory
- outDir = fs.makeQualified(outDir);
- setOutputPath(job, outDir);
- // get delegation token for the outDir's file system
- TokenCache.obtainTokensForNamenodes(job.getCredentials(),
- new Path[] {outDir}, job);
- // check its existence
- if (fs.exists(outDir)) {
- //如果输出目录以及存在,则抛异常
- throw new FileAlreadyExistsException("Output directory " + outDir +
- " already exists");
- }
- }
- }
就是检查输出目录在不在的操作。在这个类里还出现了一个辅助类:
- public static Path getTaskOutputPath(JobConf conf, String name)
- throws IOException {
- // ${mapred.out.dir}
- Path outputPath = getOutputPath(conf);
- if (outputPath == null) {
- throw new IOException("Undefined job output-path");
- }
- //根据OutputCommitter获取输出路径
- OutputCommitter committer = conf.getOutputCommitter();
- Path workPath = outputPath;
- TaskAttemptContext context = new TaskAttemptContext(conf,
- TaskAttemptID.forName(conf.get("mapred.task.id")));
- if (committer instanceof FileOutputCommitter) {
- workPath = ((FileOutputCommitter)committer).getWorkPath(context,
- outputPath);
- }
- // ${mapred.out.dir}/_temporary/_${taskid}/${name}
- return new Path(workPath, name);
- }
就是上面OutputCommiter,里面定义了很多和Task,job作业相关的方法。很多时候都会与OutputFormat合作的形式出现。他也有自己的子类实现FileOutputCommiter:
- public class FileOutputCommitter extends OutputCommitter {
- public static final Log LOG = LogFactory.getLog(
- "org.apache.hadoop.mapred.FileOutputCommitter");
- /**
- * Temporary directory name
- */
- public static final String TEMP_DIR_NAME = "_temporary";
- public static final String SUCCEEDED_FILE_NAME = "_SUCCESS";
- static final String SUCCESSFUL_JOB_OUTPUT_DIR_MARKER =
- "mapreduce.fileoutputcommitter.marksuccessfuljobs";
- public void setupJob(JobContext context) throws IOException {
- JobConf conf = context.getJobConf();
- Path outputPath = FileOutputFormat.getOutputPath(conf);
- if (outputPath != null) {
- Path tmpDir = new Path(outputPath, FileOutputCommitter.TEMP_DIR_NAME);
- FileSystem fileSys = tmpDir.getFileSystem(conf);
- if (!fileSys.mkdirs(tmpDir)) {
- LOG.error("Mkdirs failed to create " + tmpDir.toString());
- }
- }
- }
- ....
在Reduce阶段的后面的写阶段,FileOutputFormat是默认的输出的类型:
- //获取输出的key,value
- final RecordWriter<OUTKEY, OUTVALUE> out = new OldTrackingRecordWriter<OUTKEY, OUTVALUE>(
- reduceOutputCounter, job, reporter, finalName);
- OutputCollector<OUTKEY,OUTVALUE> collector =
- new OutputCollector<OUTKEY,OUTVALUE>() {
- public void collect(OUTKEY key, OUTVALUE value)
- throws IOException {
- //将处理后的key,value写入输出流中,最后写入HDFS作为最终结果
- out.write(key, value);
- // indicate that progress update needs to be sent
- reporter.progress();
- }
- };
out就是直接发挥作用的类,但是是哪个Formtat的返回的呢,我们进入OldTrackingRecordWriter继续看:
- public OldTrackingRecordWriter(
- org.apache.hadoop.mapred.Counters.Counter outputRecordCounter,
- JobConf job, TaskReporter reporter, String finalName)
- throws IOException {
- this.outputRecordCounter = outputRecordCounter;
- //默认是FileOutputFormat文件输出方式
- this.fileOutputByteCounter = reporter
- .getCounter(FileOutputFormat.Counter.BYTES_WRITTEN);
- Statistics matchedStats = null;
- if (job.getOutputFormat() instanceof FileOutputFormat) {
- matchedStats = getFsStatistics(FileOutputFormat.getOutputPath(job), job);
- }
- fsStats = matchedStats;
- FileSystem fs = FileSystem.get(job);
- long bytesOutPrev = getOutputBytes(fsStats);
- //从配置中获取作业的输出方式
- this.real = job.getOutputFormat().getRecordWriter(fs, job, finalName,
- reporter);
- long bytesOutCurr = getOutputBytes(fsStats);
- fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
- }
果然是我们所想的那样,FileOutputFormat,但是不要忘了它的getRecordWriter()是抽象方法,调用它还必须由它的子类来实现:
- public abstract RecordWriter<K, V> getRecordWriter(FileSystem ignored,
- JobConf job, String name,
- Progressable progress)
- throws IOException;
在这里我们举出其中在InputFormat举过的例子,TextOutputFormat,SequenceFileOutputFormat,与TextInputFormat,SequenceFileInputFormat对应。也就说说上面2个子类定义了2种截然不同的输出格式,也就返回了不一样的RecordWriter实现类.在TextOutputFormat中,他定义了一个叫LineRecordWriter的定义:
- public RecordWriter<K, V> getRecordWriter(FileSystem ignored,
- JobConf job,
- String name,
- Progressable progress)
- throws IOException {
- //从配置判断输出是否要压缩
- boolean isCompressed = getCompressOutput(job);
- //配置中获取加在key-value的分隔符
- String keyValueSeparator = job.get("mapred.textoutputformat.separator",
- " ");
- //根据是否压缩获取相应的LineRecordWriter
- if (!isCompressed) {
- Path file = FileOutputFormat.getTaskOutputPath(job, name);
- FileSystem fs = file.getFileSystem(job);
- FSDataOutputStream fileOut = fs.create(file, progress);
- return new LineRecordWriter<K, V>(fileOut, keyValueSeparator);
- } else {
- Class<? extends CompressionCodec> codecClass =
- getOutputCompressorClass(job, GzipCodec.class);
- // create the named codec
- CompressionCodec codec = ReflectionUtils.newInstance(codecClass, job);
- // build the filename including the extension
- Path file =
- FileOutputFormat.getTaskOutputPath(job,
- name + codec.getDefaultExtension());
- FileSystem fs = file.getFileSystem(job);
- FSDataOutputStream fileOut = fs.create(file, progress);
- return new LineRecordWriter<K, V>(new DataOutputStream
- (codec.createOutputStream(fileOut)),
- keyValueSeparator);
- }
他以一个内部类的形式存在于TextOutputFormat。而在SequenceFileOutputFormat中,他的形式是怎样的呢:
- public RecordWriter<K, V> getRecordWriter(
- FileSystem ignored, JobConf job,
- String name, Progressable progress)
- throws IOException {
- // get the path of the temporary output file
- Path file = FileOutputFormat.getTaskOutputPath(job, name);
- FileSystem fs = file.getFileSystem(job);
- CompressionCodec codec = null;
- CompressionType compressionType = CompressionType.NONE;
- if (getCompressOutput(job)) {
- // find the kind of compression to do
- compressionType = getOutputCompressionType(job);
- // find the right codec
- Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job,
- DefaultCodec.class);
- codec = ReflectionUtils.newInstance(codecClass, job);
- }
- final SequenceFile.Writer out =
- SequenceFile.createWriter(fs, job, file,
- job.getOutputKeyClass(),
- job.getOutputValueClass(),
- compressionType,
- codec,
- progress);
- return new RecordWriter<K, V>() {
- public void write(K key, V value)
- throws IOException {
- out.append(key, value);
- }
- public void close(Reporter reporter) throws IOException { out.close();}
- };
- }
关键的操作都在于SequenceFile.Writer中。有不同的RecordWriter就会有不同的写入数据的方式,这里我们举LineRecordWriter的例子。看看他的写入方法:
- //往输出流中写入key-value
- public synchronized void write(K key, V value)
- throws IOException {
- //判断键值对是否为空
- boolean nullKey = key == null || key instanceof NullWritable;
- boolean nullValue = value == null || value instanceof NullWritable;
- //如果k-v都为空,则操作失败,不写入直接返回
- if (nullKey && nullValue) {
- return;
- }
- //如果key不空,则写入key
- if (!nullKey) {
- writeObject(key);
- }
- //如果key,value都不为空,则中间写入k-v分隔符,在这里为 空格符
- if (!(nullKey || nullValue)) {
- out.write(keyValueSeparator);
- }
- //最后写入value
- if (!nullValue) {
- writeObject(value);
- }
在这个方法里,我们就能看出他的存储形式就是我刚刚在上面讲的第二种存储方式。这个方法将会在下面的代码中被执行:
- OutputCollector<OUTKEY,OUTVALUE> collector =
- new OutputCollector<OUTKEY,OUTVALUE>() {
- public void collect(OUTKEY key, OUTVALUE value)
- throws IOException {
- //将处理后的key,value写入输出流中,最后写入HDFS作为最终结果
- out.write(key, value);
- // indicate that progress update needs to be sent
- reporter.progress();
- }
- };
过程可以这么理解:
collector.collect()------->out.write(key, value)------->LineRecordWriter.write(key, value)------->DataOutputStream.write(key, value).
DataOutputStream是内置于LineRecordWriter的作为里面的变量存在的。这样从Reduce末尾阶段到Output的过程也完全打通了。下面可以看看这上面涉及的完整的类目关系。
下一阶段的学习,可能或偏向于Task,Job阶段的过程分析,更加宏观过程上的一个分析。也可能会分析某个功能块的实现过程,比如Hadoop的IPC过程,据说用了很多JAVA NIO的东西。