zoukankan      html  css  js  c++  java
  • BZOJ 1977[BeiJing2010组队]次小生成树 Tree

    描述:

    就是求一个次小生成树的边权和

    传送门

    题解

    我们先构造一个最小生成树, 把树上的边记录下来。

    然后再枚举每条非树边(u, v, val),在树上找出u 到v 路径上的最小边$g_0$ 和 严格次小边 $g_1$

    如果$val > g_0$就可以考虑把$g_0$ 替换成$val$ 并记录答案。

    如果$val = g_0$ 就把$g_1$替换成$val$ 记录答案。

    然后我们就需要快速求出树链上的最小和次小边, 需要用树上倍增求LCA类似的方法求。

    定义$g[0][ i ][ j ]$ 表示从$j$ 到第 $2^i$ 辈祖先中的最小边, $g[1][ i ][ j ] $表示从$j$ 到 第$2^i$ 辈祖先中的次小边, 满足以下关系:

    1: $g[0][ i ][ j ] = max( g[0][ i - 1][ j ], g[0][ i - 1][ f[i - 1][ j ]]) $

    2 :$ g[1][ i ][ j ] = max( g[1][ i - 1][ j ], g[1][ i - 1 ][ f[i - 1][ j ]]) $  当$g[0][i - 1][ j ] = g[0][ i - 1][ f[i - 1][ j ]] $

    3: $ g[1][ i ][ j ] = max(g[0][ i - 1][ j ], g[1][ i - 1][ f[i - 1][ j ]])$  当$g[0][i - 1][ j ] < g[0][ i - 1][ f[i - 1][ j ]] $

    4: $ g[1][ i ][ j ] = max(g[1][ i - 1][ j ], g[0][ i - 1][ f[i - 1][ j ]])$  当$g[0][i - 1][ j ] > g[0][ i - 1][ f[i - 1][ j ]] $

    倍增求树链上的最小和次小值时同理合并

    题解

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #define rd read()
      5 #define rep(i,a,b) for(register int i = (a); i <= (b); ++i)
      6 #define per(i,a,b) for(register int i = (a); i >= (b); --i)
      7 #define ll long long
      8 using namespace std;
      9 
     10 const int N = 5e5;
     11 const int inf = ~0U >> 1;
     12 
     13 int n, m;
     14 ll sum, ans = 1e18;
     15 int fa[N], f[30][N], g[2][30][N], dep[N];
     16 int head[N], tot;
     17 
     18 struct edge {
     19     int nxt, to, val;
     20 }e[N << 2];
     21 
     22 struct node {
     23     int u, v, val, mk;
     24 }E[N << 2];
     25 
     26 inline int read() {
     27     int X = 0, p = 1; char c = getchar();
     28     for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
     29     for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
     30     return X * p;
     31 }
     32 
     33 inline void added(int u, int v, int val) {
     34     e[++tot].to = v;
     35     e[tot].nxt = head[u];
     36     e[tot].val = val;
     37     head[u] = tot;
     38 }
     39 
     40 inline void add(int u, int v, int val) {
     41     added(u, v, val); added(v, u, val);
     42 }
     43 
     44 inline int fd(int x) {
     45     return fa[x] == x ? x : fa[x] = fd(fa[x]);
     46 }
     47 
     48 inline int cmp(const node &A, const node &B) {
     49     return A.val < B.val;
     50 }
     51 
     52 inline void dfs(int u) {
     53     for(int i = head[u]; i; i = e[i].nxt) {
     54         int nt = e[i].to;
     55         if(nt == f[0][u]) continue;
     56         f[0][nt] = u;
     57         g[0][0][nt] = e[i].val;
     58         g[1][0][nt] = -inf;
     59         dep[nt] = dep[u] + 1;
     60         dfs(nt);
     61     }
     62 }
     63 
     64 inline void LCA(int x, int y, int &a, int &b) {
     65     int g0, g1;
     66     if(dep[x] < dep[y]) swap(x, y);
     67     for(int i = 20; ~i; --i) if(dep[f[i][x]] >= dep[y]) {
     68         g0 = g[0][i][x]; g1 = g[1][i][x];
     69         if(g0 == a) b = max(b, g1);
     70         if(g0 > a) b = max(a, g1);
     71         if(g0 < a) b = max(g0, b);
     72         a = max(a, g0);
     73         x = f[i][x];
     74     }
     75     for(int i = 20; ~i; --i) if(f[i][x] != f[i][y]) {
     76         g0 = g[0][i][x]; g1 = g[1][i][x];
     77         if(g0 == a) b = max(b, g1);
     78         if(g0 > a) b = max(a, g1);
     79         if(g0 < a) b = max(g0, b);
     80         a = max(a, g0);
     81 
     82         g0 = g[0][i][y]; g1 = g[1][i][y];
     83         if(g0 == a) b = max(b, g1);
     84         if(g0 > a) b = max(a, g1);
     85         if(g0 < a) b = max(g0, b);
     86         a = max(a, g0);
     87         x = f[i][x]; y = f[i][y];
     88     }
     89 
     90     g0 = g[0][0][x]; g1 = g[1][0][x];
     91     if(g0 == a) b = max(b, g1);
     92     if(g0 > a) b = max(a, g1);
     93     if(g0 < a) b = max(g0, b);
     94     a = max(a, g0);
     95 
     96     g0 = g[0][0][y]; g1 = g[1][0][y];
     97     if(g0 == a) b = max(b, g1);
     98     if(g0 > a) b = max(a, g1);
     99     if(g0 < a) b = max(g0, b);
    100     a = max(a, g0);    
    101 }
    102 
    103 int main()
    104 {
    105     n = rd; m = rd;
    106     rep(i, 1, n) fa[i] = i;
    107     rep(i, 1, m) {
    108         int u = rd, v = rd, val = rd;
    109         E[i].u = u; E[i].v = v; E[i].val = val; E[i].mk = 0;
    110     }
    111     sort(E+1, E+1+m, cmp);
    112     rep(i, 1, m) {
    113         int x = fd(E[i].u), y = fd(E[i].v);
    114         if(x == y) continue;
    115         sum += E[i].val;
    116         fa[y] = x;
    117         E[i].mk = 1;
    118         add(E[i].u, E[i].v, E[i].val);
    119     }
    120     dep[1] = 1;
    121     dfs(1);
    122     rep(i, 1, 20) rep(j, 1, n) {
    123         f[i][j] = f[i - 1][f[i - 1][j]];
    124         g[0][i][j] = max(g[0][i - 1][j], g[0][i - 1][f[i - 1][j]]);
    125         int tmp = -inf;
    126         if(g[0][i - 1][j] == g[0][i - 1][f[i - 1][j]]) tmp = max(g[1][i - 1][j], g[1][i - 1][f[i - 1][j]]);
    127         if(g[0][i - 1][j] < g[0][i - 1][f[i - 1][j]]) tmp = max(g[0][i - 1][j], g[1][i - 1][f[i - 1][j]]);
    128         if(g[0][i - 1][j] > g[0][i - 1][f[i - 1][j]]) tmp = max(g[1][i - 1][j], g[0][i - 1][f[i - 1][j]]);
    129         g[1][i][j] = tmp;
    130     }
    131     rep(i, 1, m) if(!E[i].mk) {
    132         int x = E[i].u, y = E[i].v, g0 = -inf, g1 = -inf;
    133         LCA(x, y, g0, g1);
    134         if(E[i].val == g0 && g1 != -inf) ans = min(ans, sum + E[i].val - g1);
    135         if(E[i].val > g0) ans = min(ans, sum + E[i].val - g0);
    136     }
    137     printf("%lld
    ",ans);
    138 }
    View Code
  • 相关阅读:
    android之APN
    Simple XML
    Retrofit – Java(Android) 的REST 接口封装类库
    Android 删除短信
    解决android:background背景图片被拉伸问题
    人分三等,你是哪一等?
    将android中的sample例子到eclipse中
    linux内存管理
    Android 使用android-support-multidex解决Dex超出方法数的限制问题,让你的应用不再爆棚(转)
    使用maven创建web项目
  • 原文地址:https://www.cnblogs.com/cychester/p/9556536.html
Copyright © 2011-2022 走看看