zoukankan      html  css  js  c++  java
  • The Pilots Brothers' refrigerator

    2965

    he Pilots Brothers' refrigerator
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19995   Accepted: 7695   Special Judge

    Description

    The game “The Pilots Brothers: following the stripy elephant” has a quest where a player needs to open a refrigerator.

    There are 16 handles on the refrigerator door. Every handle can be in one of two states: open or closed. The refrigerator is open only when all handles are open. The handles are represented as a matrix 4х4. You can change the state of a handle in any location [i, j] (1 ≤ i, j ≤ 4). However, this also changes states of all handles in row i and all handles in column j.

    The task is to determine the minimum number of handle switching necessary to open the refrigerator.

    Input

    The input contains four lines. Each of the four lines contains four characters describing the initial state of appropriate handles. A symbol “+” means that the handle is in closed state, whereas the symbol “−” means “open”. At least one of the handles is initially closed.

    Output

    The first line of the input contains N – the minimum number of switching. The rest N lines describe switching sequence. Each of the lines contains a row number and a column number of the matrix separated by one or more spaces. If there are several solutions, you may give any one of them.

    Sample Input

    -+--
    ----
    ----
    -+--

    Sample Output

    6
    1 1
    1 3
    1 4
    4 1
    4 3
    4 4

    Source

    Northeastern Europe 2004, Western Subregion
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<algorithm>
      4 using namespace std;
      5 
      6 int map[6][6],ak[10005],AK[10005],flg,n,step;
      7 
      8 int judge(int map[6][6])
      9 {
     10     for(int i=1;i<=4;i++)
     11         for(int j=1;j<=4;j++)
     12         {
     13             if(map[i][j]!=1)
     14                 return 0;
     15         }
     16     return 1;
     17 }
     18 
     19 void flip(int r,int c)
     20 {
     21     int i,j;
     22     for(i=1;i<r;i++)
     23     {
     24         if(map[i][c]==0)
     25             map[i][c]=1;
     26         else
     27             map[i][c]=0;
     28     }
     29     for(i=r+1;i<=4;i++)
     30     {
     31         if(map[i][c]==0)
     32             map[i][c]=1;
     33         else
     34             map[i][c]=0;
     35     }
     36     for(j=1;j<c;j++)
     37     {
     38         if(map[r][j]==0)
     39             map[r][j]=1;
     40         else
     41             map[r][j]=0;
     42     }
     43     for(j=c+1;j<=4;j++)
     44     {
     45         if(map[r][j]==0)
     46             map[r][j]=1;
     47         else
     48             map[r][j]=0;
     49     }
     50     if(map[r][c]==0)
     51         map[r][c]=1;
     52     else
     53         map[r][c]=0;
     54     return;
     55 }
     56 
     57 void dfs(int r,int c,int deep)
     58 {
     59     int i,j;
     60     if(deep==step)
     61     {
     62         flg=judge(map);
     63         return;
     64     }
     65     if(flg==1 || r>4)
     66     {
     67         return;
     68     }
     69     flip(r,c);
     70     ak[n]=r,AK[n]=c;
     71     n++;
     72     if(c<4)
     73         dfs(r,c+1,deep+1);
     74     else
     75         dfs(r+1,1,deep+1);
     76 
     77     if(flg!=1)
     78     {
     79         flip(r,c);
     80         n--;
     81     if(c<4)
     82         dfs(r,c+1,deep);
     83     else
     84         dfs(r+1,1,deep);
     85     }
     86     return;
     87 }
     88 
     89 int main()
     90 {
     91     int i,j;
     92     char x;
     93     memset(map,0,sizeof(map));
     94     for(i=1;i<=4;i++)
     95     {
     96         for(j=1;j<=4;j++)
     97         {
     98             scanf("%c",&x);
     99             if(x=='-')
    100                 map[i][j]=1;
    101         }
    102         getchar();
    103     }
    104     for(step=0;step<=16;step++)
    105     {
    106         n=1;
    107         dfs(1,1,0);
    108         if(flg==1)
    109             break;
    110     }
    111     printf("%d
    ",step);
    112     for(i=1;i<=n-1;i++)
    113     {
    114         printf("%d %d
    ",ak[i],AK[i]);
    115     }
    116     return 0;
    117 }
    View Code
  • 相关阅读:
    POJ1470 Closest Common Ancestors(LCA入门)
    POJ1330 Nearest Common Ancestors(倍增LCA算法求无边权树的模板)
    HDU3078 Network (倍增LCA算法求树链)
    HDU2874 Connections between cities(并查集+倍增LCA算法求森林最短路)
    HDU2586 How far away?(倍增LCA算法求带边权树上最短路)
    POJ1062 昂贵的聘礼
    HDU4725 The Shortest Path in Nya Graph(堆优化的dijkstra算法)
    数据仓库详解:包括概念、架构及设计
    利用行为标签构建用户画像
    Spark SQL深度理解篇:模块实现、代码结构及执行流程总览(2)
  • 原文地址:https://www.cnblogs.com/cyd308/p/4444466.html
Copyright © 2011-2022 走看看