zoukankan      html  css  js  c++  java
  • Writing Code(dp)

    A. Writing Code
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

    Let's call a sequence of non-negative integers v1, v2, ..., vn a plan, if v1 + v2 + ... + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most b bugs in total.

    Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

    Input

    The first line contains four integers nmbmod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

    The next line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

    Output

    Print a single integer — the answer to the problem modulo mod.

    Sample test(s)
    input
    3 3 3 100
    1 1 1
    output
    10
    input
    3 6 5 1000000007
    1 2 3
    output
    0
    input
    3 5 6 11
    1 2 1
    output
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 
     4 int main()
     5 {   //dp[j][k]表示写了j行时共有k个BUG
     6     int i,j,k;
     7     int n,m,b,mod,dp[505][505],a[505];
     8     memset(dp,0,sizeof(dp));
     9     scanf("%d %d %d %d",&n,&m,&b,&mod);
    10 
    11     for(i=1;i<=n;i++)
    12         scanf("%d",&a[i]);
    13     dp[0][0]=1;
    14     for(i=1;i<=n;i++)
    15     {
    16         for(j=0;j<m;j++)
    17         {
    18             for(k=0;k<=b-a[i];k++)
    19             {
    20                 dp[j+1][k+a[i]]=dp[j][k]+dp[j+1][k+a[i]];
    21                 dp[j+1][k+a[i]]=dp[j+1][k+a[i]]%mod;
    22             }
    23         }
    24     }
    25     int ans=0;
    26     for(k=0;k<=b;k++)
    27     {
    28         ans=ans+dp[m][k];
    29         ans=ans%mod;
    30     }
    31     printf("%d
    ",ans);
    32     return 0;
    33 }
    View Code
  • 相关阅读:
    读书笔记:A Philosophy of Software Design
    面向对象编程—价值万亿美元的灾难
    刚哥谈架构 (二) 我眼中的架构师
    软件质量成本神话
    API 如何选择 REST,GraphQL还是gRPC
    影响您的代码库的10个编程代码味道
    为什么要不断重构
    php导出excel表格的使用
    浅谈HTTP中Get与Post的区别
    C# 程序配置文件的操作(ConfigurationManager的使用)
  • 原文地址:https://www.cnblogs.com/cyd308/p/4517277.html
Copyright © 2011-2022 走看看