zoukankan      html  css  js  c++  java
  • 多校3 1002 RGCDQ

    RGCDQ

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 323    Accepted Submission(s): 162


    Problem Description
    Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
     
    Input
    There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
    In the next T lines, each line contains L, R which is mentioned above.

    All input items are integers.
    1<= T <= 1000000
    2<=L < R<=1000000
     
    Output
    For each query,output the answer in a single line. 
    See the sample for more details.
     
    Sample Input
    2 2 3 3 5
     
    Sample Output
    1 1
     
    Source
     
    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5326 5325 5324 5323 5322 
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<math.h>
      4 
      5 int a[1000050],b[1000000],k,f[1000050],s[1000050][10];
      6 
      7 int Sieve(int n)
      8 {
      9   a[1]=0;k=0;a[0]=0;
     10            for (int i = 2; i <= n; i++)
     11                 a[i] =1;
     12            for (int i = 2; i <= sqrt(n); i++)
     13            {
     14                if (a[i])
     15                    for (int j = i; j*i <=n; j++)
     16                         a[j * i] = 0;
     17            }
     18            for (int i = 0; i <= n; i++)
     19            {
     20                if (a[i]==1)
     21                {
     22                     k++;
     23                     b[k]=i;
     24                }
     25            }
     26 }
     27 
     28 int gcd(int a,int b) 
     29 { 
     30     if(a<b) 
     31         return gcd(b,a); 
     32     else if(b==0) 
     33         return a; 
     34     else
     35         return gcd(b,a%b); 
     36 } 
     37 
     38 int main()
     39 {
     40     int T;
     41     int i,j,k;
     42     Sieve(1000000);
     43     memset(f,0,sizeof(f));
     44     for(i=2;i<=1000000;i++)
     45     {
     46         int x=i;
     47         k=1;
     48         while(1)
     49         {
     50           if(x==1)
     51           {
     52             break;
     53           }
     54           if(a[x]==1)
     55           {
     56             f[i]++;
     57             break;
     58           }
     59 
     60           if(x%b[k]==0)
     61           {
     62             f[i]++;
     63             while(x%b[k]==0)
     64             {
     65               x=x/b[k];
     66             }
     67           }
     68           k++;
     69         }
     70         //printf("%d ",f[i]);
     71     }
     72     memset(s,0,sizeof(s));
     73     for(i=1;i<=1000000;i++)
     74     {
     75       for(j=1;j<=7;j++)
     76         s[i][j]=s[i-1][j];
     77       s[i][f[i]]++;
     78     }
     79     scanf("%d",&T);
     80     int l,r;
     81     int num[15];
     82     while(T--)
     83     {
     84         memset(num,0,sizeof(num));
     85         scanf("%d %d",&l,&r);
     86         for(i=1;i<=8;i++)
     87           num[i]=s[r][i]-s[l-1][i];
     88         int ma=0;
     89         for(i=10;i>=1;i--)
     90         {
     91           if(num[i]>0)
     92           {
     93             if(num[i]>=2)
     94             {
     95               if(i>ma)
     96                 ma=i;
     97             }
     98             else
     99             {
    100               for(j=i-1;j>=1;j--)
    101               {
    102                 if(num[j]>0)
    103                   if(gcd(i,j)>ma)
    104                     ma=gcd(i,j);
    105               }
    106             }
    107 
    108           }
    109         }
    110         printf("%d
    ",ma);
    111     }
    112     return 0;
    113 }
    View Code
  • 相关阅读:
    react 常用组件整理
    react 问题记录二(侧重于state或者说server层操作)
    web前端常用小函数汇总
    vue 路由跳转四种方式 (带参数) 【转藏】
    微信小程序实用组件:省市区三级联动
    vue table组件显示一个图片

    520
    微信小程序,子页面调用父页面的函数和方法
    webstorm 右侧滚动条怎么设置颜色
  • 原文地址:https://www.cnblogs.com/cyd308/p/4684204.html
Copyright © 2011-2022 走看看