Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
1 #include <stdio.h> 2 #include <string.h> 3 #include <algorithm> 4 using namespace std; 5 6 int n,c[5050]; 7 8 int lowbit(int x) 9 { 10 return x&(-x); 11 } 12 13 void add(int i,int val) 14 { 15 while(i<=n) 16 { 17 c[i]=c[i]+val; 18 i=i+lowbit(i); 19 } 20 } 21 22 int sum(int i) 23 { 24 int s=0; 25 while(i) 26 { 27 s=s+c[i]; 28 i=i-lowbit(i); 29 } 30 return s; 31 } 32 33 int main() 34 { 35 int i,j,k; 36 int a[5050]; 37 while(scanf("%d",&n)!=EOF) 38 { 39 int cnt=0; 40 memset(c,0,sizeof(c)); 41 for(i=1;i<=n;i++) 42 { 43 scanf("%d",&a[i]); 44 a[i]++; 45 cnt=cnt+sum(n)-sum(a[i]); 46 add(a[i],1); 47 } 48 int mi=cnt; 49 for(i=1;i<n;i++) 50 { 51 cnt=cnt-(a[i]-1)+(n-a[i]); 52 if(cnt<mi) 53 mi=cnt; 54 } 55 printf("%d ",mi); 56 } 57 return 0; 58 }