zoukankan      html  css  js  c++  java
  • Uva 10917 Walk Through the Forest 最短路

    Problem C: A Walk Through the Forest

    Jimmy experiences a lot of stress at work these days, especially since his accident made working difficult. To relax after a hard day, he likes to walk home. To make things even nicer, his office is on one side of a forest, and his house is on the other. A nice walk through the forest, seeing the birds and chipmunks is quite enjoyable.

    The forest is beautiful, and Jimmy wants to take a different route everyday. He also wants to get home before dark, so he always takes a path to make progress towards his house. He considers taking a path from A to Bto be progress if there exists a route from B to his home that is shorter than any possible route from A. Calculate how many different routes through the forest Jimmy might take.

    Input

    Input contains several test cases followed by a line containing 0. Jimmy has numbered each intersection or joining of paths starting with 1. His office is numbered 1, and his house is numbered 2. The first line of each test case gives the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The followingM lines each contain a pair of intersections a b and an integer distance 1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a different intersection b. Jimmy may walk a path any direction he chooses. There is at most one path between any pair of intersections.

    Output

    For each test case, output a single integer indicating the number of different routes through the forest. You may assume that this number does not exceed 2147483647.

    Sample Input

    5 6
    1 3 2
    1 4 2
    3 4 3
    1 5 12
    4 2 34
    5 2 24
    7 8
    1 3 1
    1 4 1
    3 7 1
    7 4 1
    7 5 1
    6 7 1
    5 2 1
    6 2 1
    0
    

    Output for Sample Input

    2
    4
    
    ----------------
    样例理解不能
    (⊙_⊙) 不明觉厉呀。
    ----------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    
    using namespace std;
    
    const int maxn=11111;
    const int maxm=11111;
    const int INF=1e9;
    
    struct Edge{
        int from,to,dist;
    };
    
    struct HeapNode{
        int d,u;
        bool operator<(const HeapNode& rhs) const{
            return d>rhs.d;
        }
    };
    
    struct Dijkstra{
        int n,m;
        vector<Edge> edges;
        vector<int> G[maxn];
        bool done[maxn];
        int d[maxn];
        int p[maxn];
    
        void init(int n){
            this->n=n;
            for (int i=0;i<n;i++) G[i].clear();
            edges.clear();
        }
    
        void addedge(int from,int to,int dist){
            edges.push_back((Edge){from,to,dist});
            m=edges.size();
            G[from].push_back(m-1);
        }
    
        void dijkstra(int s){
            priority_queue<HeapNode>que;
            for (int i=0;i<n;i++) d[i]=INF;
            d[s]=0;
            memset(done,0,sizeof(done));
            que.push((HeapNode){0,s});
            while (!que.empty()){
                HeapNode x=que.top();
                que.pop();
                int u=x.u;
                if (done[u]) continue;
                done[u]=true;
                for (int i=0;i<G[u].size();i++){
                    Edge& e=edges[G[u][i]];
                    if (d[e.to]>d[u]+e.dist){
                        d[e.to]=d[u]+e.dist;
                        p[e.to]=G[u][i];
                        que.push((HeapNode){d[e.to],e.to});
                    }
                }
            }
    
        }
    }solver;
    
    int f[maxn];
    bool vis[maxn];
    /*
    int dfs(int u)
    {
        int ret=0,v;
        for (int k=0;k<solver.G[u].size();k++)
        {
            v=solver.edges[solver.G[u][k]].to;
            if (solver.d[v]<solver.d[u])
            {
                if (f[v]) ret+=f[v];
                else
                {
                    f[v]=dfs(v);
                    ret+=f[v];
                }
            }
        }
        return ret;
    }
    */
    
    
    int dfs(int u)
    {
        int ret=0,v;
        if (vis[u]) return f[u];
        for (int k=0;k<solver.G[u].size();k++)
        {
            v=solver.edges[solver.G[u][k]].to;
            if (solver.d[v]<solver.d[u])
            {
                if (dfs(v)) ret+=dfs(v);
            }
        }
        vis[u]=true;
        f[u]=ret;
        return ret;
    }
    
    int main()
    {
        int n,m;
        while (~scanf("%d",&n))
        {
            if (n==0) break;
            scanf("%d",&m);
            memset(f,0,sizeof(f));
            memset(vis,0,sizeof(vis));
            solver.init(n);
            while (m--)
            {
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                a--;
                b--;
                solver.addedge(a,b,c);
                solver.addedge(b,a,c);
            }
            solver.dijkstra(1);
            f[1]=1;
            vis[1]=true;
            printf("%d\n",dfs(0));
        }
        return 0;
    }
    






  • 相关阅读:
    Android核心分析之二十五Android GDI之共享缓冲区机制
    Android核心分析之二十四Android GDI之显示缓冲管理
    Android核心分析之二十三Andoird GDI之基本原理及其总体框架
    Android核心分析之二十二Android应用框架之Activity
    Android核心分析之二十一Android应用框架之AndroidApplication
    Android核心分析之二十Android应用程序框架之无边界设计意图
    Android核心分析之十九电话系统之GSMCallTacker
    Android核心分析之十八Android电话系统之RIL-Java
    NFS 服务器的配置
    tftp 服务器的配置
  • 原文地址:https://www.cnblogs.com/cyendra/p/3226315.html
Copyright © 2011-2022 走看看