zoukankan      html  css  js  c++  java
  • Uva 1292 Strategic game 树形dp 最小点覆盖

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    For example for the tree:

    the solution is one soldier (at the node 1).

    Input 

    The input file contains several data sets in text format. Each data set represents a tree with the following description:
  • the number of nodes
  • the description of each node in the following format:
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 � node_identifiernumber_of_roads
    or
    node_identifier:(0)
  • The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n ≤ 1500). Every edge appears only once in the input data.

    Output 

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers).

    Sample Input 

    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)

    Sample Output 

    1
    2
    -------------

    f[i][0]表示点i属于点覆盖,并且以点i为根的子树中所连接的边都被覆盖的情况下点覆盖集中所包含的最少点数。

    f[i][1]表示点i不属于点覆盖,且以i为根的子树中所连接的边都被覆盖的情况下点覆盖集中所包含最少点的个数。

    ① f[i][0]=1+sum{ min(f[v][0], f[v][1]) };

    ② f[i][1]=sum{ f[v][0] };

    -------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    const int maxn=3111;
    const int INF=1e9;
    
    struct EDGENODE
    {
        int to,next;
    } edges[maxn];
    int head[maxn],edge;
    void addedge(int u,int v)
    {
        edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++;
        edges[edge].to=u,edges[edge].next=head[v],head[v]=edge++;
    }
    void init_edges()
    {
        memset(head,-1,sizeof(head));
        edge=0;
    }
    int n;
    int f[maxn][2];
    void dp(int u,int pa)
    {
        f[u][0]=1;
        f[u][1]=0;
        for (int k=head[u]; k!=-1; k=edges[k].next)
        {
            int v=edges[k].to;
            if (v==pa) continue;
            dp(v,u);
            f[u][0]+=min(f[v][0],f[v][1]);
            f[u][1]+=f[v][0];
        }
    }
    
    int main()
    {
        while (~scanf("%d",&n))
        {
            int u,v,t;
            init_edges();
            for (int i=0; i<n; i++)
            {
                scanf("%d:(%d)",&u,&t);
                while (t--)
                {
                    scanf("%d",&v);
                    addedge(u,v);
                }
            }
            dp(0,-1);
            printf("%d\n",min(f[0][0],f[0][1]));
        }
        return 0;
    }
    







  • 相关阅读:
    JAVA反射中的getFields()方法和getDeclaredFields ()方法的区别
    Transact-SQL 示例
    Transact-SQL 示例
    JQuery Easyui引入easyui-lang-zh_CN.js后出现乱码的问题解决方法
    easyui 表格底部加合计
    VS调试技巧之附加进程
    c#如何读取相机手机的拍摄时间
    调用 webapi的put和delete 报"Method Not Allowed" 405 错误。
    sqlserver数据库 去除字段中空格,换行符,回车符(使用replace语句)
    C#中yield return用法分析
  • 原文地址:https://www.cnblogs.com/cyendra/p/3226355.html
Copyright © 2011-2022 走看看