zoukankan      html  css  js  c++  java
  • Uva 1292 Strategic game 树形dp 最小点覆盖

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    For example for the tree:

    the solution is one soldier (at the node 1).

    Input 

    The input file contains several data sets in text format. Each data set represents a tree with the following description:
  • the number of nodes
  • the description of each node in the following format:
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 � node_identifiernumber_of_roads
    or
    node_identifier:(0)
  • The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n ≤ 1500). Every edge appears only once in the input data.

    Output 

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers).

    Sample Input 

    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)

    Sample Output 

    1
    2
    -------------

    f[i][0]表示点i属于点覆盖,并且以点i为根的子树中所连接的边都被覆盖的情况下点覆盖集中所包含的最少点数。

    f[i][1]表示点i不属于点覆盖,且以i为根的子树中所连接的边都被覆盖的情况下点覆盖集中所包含最少点的个数。

    ① f[i][0]=1+sum{ min(f[v][0], f[v][1]) };

    ② f[i][1]=sum{ f[v][0] };

    -------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    const int maxn=3111;
    const int INF=1e9;
    
    struct EDGENODE
    {
        int to,next;
    } edges[maxn];
    int head[maxn],edge;
    void addedge(int u,int v)
    {
        edges[edge].to=v,edges[edge].next=head[u],head[u]=edge++;
        edges[edge].to=u,edges[edge].next=head[v],head[v]=edge++;
    }
    void init_edges()
    {
        memset(head,-1,sizeof(head));
        edge=0;
    }
    int n;
    int f[maxn][2];
    void dp(int u,int pa)
    {
        f[u][0]=1;
        f[u][1]=0;
        for (int k=head[u]; k!=-1; k=edges[k].next)
        {
            int v=edges[k].to;
            if (v==pa) continue;
            dp(v,u);
            f[u][0]+=min(f[v][0],f[v][1]);
            f[u][1]+=f[v][0];
        }
    }
    
    int main()
    {
        while (~scanf("%d",&n))
        {
            int u,v,t;
            init_edges();
            for (int i=0; i<n; i++)
            {
                scanf("%d:(%d)",&u,&t);
                while (t--)
                {
                    scanf("%d",&v);
                    addedge(u,v);
                }
            }
            dp(0,-1);
            printf("%d\n",min(f[0][0],f[0][1]));
        }
        return 0;
    }
    







  • 相关阅读:
    js数组去重五种方法
    wm_concat 多行字符串拼接
    ORACLE WITH AS 简单用法
    layui laytpl 语法
    看懂Oracle执行计划
    GIT RM -R --CACHED 去掉已经托管在GIT上的文件
    sourceTree使用教程--拉取、获取
    SourceTree忽略文件和文件夹
    layui table 详细讲解
    利用POI实现下拉框级联
  • 原文地址:https://www.cnblogs.com/cyendra/p/3226355.html
Copyright © 2011-2022 走看看