题目链接:点击打开链接
题目描写叙述:如今有一张关系网。网中有n个结点标号为1~n。有m个关系,每一个关系之间有一个权值。问从2~n-1中随意去掉一个结点之后,从1~n的距离中全部最小值的最大值为多少?
解题思路:多次调用Dijkstra就可以,每次标记那个结点不通就可以
代码:
#include <cstdio> #include <queue> #include <cstring> #define MAXN 31 #define MAXE 1010 #define INF 1e9+7 using namespace std; int head[MAXN]; struct Edge{ int to,cost,next; }edge[MAXE*2]; struct node{ int ct; int cost; node(int _ct,int _cost):ct(_ct),cost(_cost){} bool operator<(const node& b)const{///注意优先权队列:<代表大顶堆,>代表小顶堆 return cost>b.cost; } }; int tol; void addEdge(int x,int y,int cost){ edge[tol].to=y; edge[tol].cost=cost; edge[tol].next=head[x]; head[x]=tol++; edge[tol].to=x; edge[tol].cost=cost; edge[tol].next=head[y]; head[y]=tol++; } int n,m; int dis[MAXN]; bool vis[MAXN]; void bfs(int nt){ memset(vis,false,sizeof(vis)); vis[nt]=true; for(int i=1;i<=n;++i) dis[i]=INF; dis[1]=0; priority_queue<node> pq; while(!pq.empty()) pq.pop(); pq.push(node(1,0)); while(!pq.empty()){ node tmp=pq.top(); pq.pop(); int u=tmp.ct; if(vis[u]) continue; vis[u]=true; for(int i=head[u];i!=-1;i=edge[i].next){ int v=edge[i].to; int cost=edge[i].cost; if(!vis[v]&&dis[v]>dis[u]+cost){ dis[v]=dis[u]+cost; pq.push(node(v,dis[v])); } } } } int main(){ while(scanf("%d%d",&n,&m)!=EOF&&(n!=0||m!=0)){ tol=0; memset(head,-1,sizeof(head)); int x,y,cost; for(int i=1;i<=m;++i){ scanf("%d%d%d",&x,&y,&cost); addEdge(x,y,cost); } int ans=0; for(int i=2;i<n;++i){ bfs(i); ans=max(ans,dis[n]); } if(ans<INF) printf("%d ",ans); else printf("Inf "); } return 0; }