zoukankan      html  css  js  c++  java
  • LCA:Tarjan算法实现

    本博文转自http://www.cnblogs.com/JVxie/p/4854719.html,转载请注明出处

    首先是最近公共祖先的概念(什么是最近公共祖先?):

        在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大公共祖先节点

        换句话说,就是两个点在这棵树上距离最近的公共祖先节点

        所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

        有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?

        答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点

        举个例子吧,如下图所示最近公共祖先是2最近公共祖先最近公共祖先。 

        这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?

        通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为O(n*q),很明显,n和q一般不会很小

        常用的求LCA的算法有:Tarjan/DFS+ST/倍增

        后两个算法都是在线算法,也很相似,时间复杂度在O(logn)~O(nlogn)之间,我个人认为较难理解。

        有的题目是可以用线段树来做的,但是其代码量很大,时间复杂度也偏高,在O(n)~O(nlogn)之间,优点在于也是简单粗暴

        这篇博客主要是要介绍一下Tarjan算法(其实是我不会在线...)。

        什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是O(n+q)

        Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解。

        下面详细介绍一下Tarjan算法的基本思路:

          1.任选一个点为根节点,从根节点开始。

          2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。

          3.若是v还有子节点,返回2,否则下一步。

          4.合并v到u上。

          5.寻找与当前点u有询问关系的点v。

          6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

        遍历的话需要用到dfs来遍历(我相信来看的人都懂吧...),至于合并,最优化的方式就是利用并查集来合并两个节点。

        下面上伪代码:

    复制代码
    Tarjan(u)//marge和find为并查集合并函数和查找函数
    {
      for each(u,v)    //访问所有u子节点v
      {
          Tarjan(v);        //继续往下遍历
          marge(u,v);    //合并v到u上
        标记v被访问过;   }   for each(u,e) //访问所有和u有询问关系的e   {    如果e被访问过;    u,e的最近公共祖先为find(e);   } }
    复制代码

        个人感觉这样还是有很多人不太理解,所以我打算模拟一遍给大家看。

        建议拿着纸和笔跟着我的描述一起模拟!!

        假设我们有一组数据 9个节点 8条边 联通情况如下:

        1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

        设我们要查找最近公共祖先的点为9--8,4--6,7--5,5--3;

        设f[]数组为并查集的父亲节点数组,初始化f[i]=i,vis[]数组为是否访问过的数组,初始为0; 

        下面开始模拟过程:

        取1为根节点往下搜索发现有两个儿子2和3;

        先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

        发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

        发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

        

        表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

        先搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点;

        发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作;

        发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1

        表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

        发现5和7有关系,但是vis[5]=0,所以不操作

        发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

        

        表示7已经被搜完,更新f[7]=5,继续搜8发现8没有子节点,则寻找与其有关系的点;

        发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

          (find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5;)

        发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

     

        表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

        

        发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

          (find(7)的顺序为f[7]=5-->f[5]=5 return 5;)

        又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

        返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

        发现2没有未被搜完的子节点,寻找与其有关系的点;

        又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

        

        表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

        搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系;

        此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

          (find(4)的顺序为f[4]=2-->f[2]=2-->f[1]=1 return 1;)

        发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

        

        更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

        发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

          (find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1;)

        发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=1

        

        更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

    蒟蒻写博客不易,如果有误还请大佬们提出
    如需转载,请署名作者并附上原文链接,蒟蒻非常感激
    名称:HolseLee
    博客地址:www.cnblogs.com/cytus
    个人邮箱:1073133650@qq.com
  • 相关阅读:
    接口新建学习---边界提取器
    Android Studio打包.so文件教程
    想要开发好的软件,必须学会这几项!
    你应该首先保护哪些应用程序?这个问题本身问错了!
    几周内搞定Java的10个方法
    翻译:程序员做些业余项目的重要性
    【源码】c#编写的安卓客户端与Windows服务器程序进行网络通信
    10款GitHub上最火爆的国产开源项目
    你的Android应用完全不需要那么多的权限
    2015年移动领域发展的九大趋势
  • 原文地址:https://www.cnblogs.com/cytus/p/7524594.html
Copyright © 2011-2022 走看看