zoukankan      html  css  js  c++  java
  • Evanyou Blog 彩带

      题目传送门

    Cornfields

    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 7963   Accepted: 3822

    Description

    FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find. 

    FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it. 

    FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield. 

    Input

    * Line 1: Three space-separated integers: N, B, and K. 

    * Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc. 

    * Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1. 

    Output

    * Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

    Sample Input

    5 3 1
    5 1 2 6 3
    1 3 5 2 7
    7 2 4 6 1
    9 9 8 6 5
    0 6 9 3 9
    1 2
    

    Sample Output

    5
    

    Source

     


      分析:

      二维$RMQ$模板题。

      就是模板,但是卡空间是真恶心。。。卡了一个小时。

      Code:

     

    //It is made by HolseLee on 4th Sep 2018
    //POJ 2019
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    const int N=251;
    int mi[N][N][8][8];
    int ma[N][N][8][8];
    
    void ready(int n)
    {
        for(int i=0; (1<<i)<=n; ++i)
        for(int j=0; (1<<j)<=n; ++j) {
            if( i==0 && j==0 ) continue;
            for(int line=1; line+(1<<i)-1<=n; ++line)
            for(int ray=1; ray+(1<<j)-1<=n; ++ray) {
                if( i ) {
                    mi[line][ray][i][j]=min(mi[line][ray][i-1][j],mi[line+(1<<(i-1))][ray][i-1][j]);
                    ma[line][ray][i][j]=max(ma[line][ray][i-1][j],ma[line+(1<<(i-1))][ray][i-1][j]);
                } else {
                    mi[line][ray][i][j]=min(mi[line][ray][i][j-1],mi[line][ray+(1<<(j-1))][i][j-1]);
                    ma[line][ray][i][j]=max(ma[line][ray][i][j-1],ma[line][ray+(1<<(j-1))][i][j-1]);
                }
            }
        }
    }
    
    int quary(int x,int y,int X,int Y) 
    {
        int kx=0,ky=0,m1,m2,m3,m4,minn,maxx;
        while( (1<<(kx+1))<=X-x+1 ) kx++;
        while( (1<<(ky+1))<=Y-y+1 ) ky++;
    
        minn=min(min(mi[x][y][kx][ky],mi[X-(1<<kx)+1][Y-(1<<ky)+1][kx][ky]),min(mi[X-(1<<kx)+1][y][kx][ky],mi[x][Y-(1<<ky)+1][kx][ky]));
    
        maxx=max(max(ma[x][y][kx][ky],ma[X-(1<<kx)+1][Y-(1<<ky)+1][kx][ky]),max(ma[X-(1<<kx)+1][y][kx][ky],ma[x][Y-(1<<ky)+1][kx][ky]));
        
        return maxx-minn;
    }
    
    int main()
    {
        int n,B,m;
        while( scanf("%d%d%d",&n,&B,&m)==3 && n && B &&m ) {
            int x,y;
            for(int i=1; i<=n; ++i) 
            for(int j=1; j<=n; ++j) {
                scanf("%d",&x);
                mi[i][j][0][0]=ma[i][j][0][0]=x;
            } 
            ready(n);
            while( m-- ) {
                scanf("%d%d",&x,&y);
                int ans=quary(x,y,x+B-1,y+B-1);
                printf("%d
    ",ans);
            }
        }
        return 0;
    }

     

     

  • 相关阅读:
    php与WebservicesNuSOAP的使用说明(转载)
    获取cpu序列号,硬盘ID,网卡MAC地址(转载)
    system.net.sockets.tcplistener
    用VS2005实现软件多语言版本的迅捷开发(转载)
    洛谷P1776 宝物筛选 题解 多重背包
    2013 ACMICPC亚洲区域赛南京站C题 题解 轮廓线DP
    2017 ACMICPC亚洲区域赛北京站J题 Pangu and Stones 题解 区间DP
    洛谷P1385 密令 题解 动态规划
    洛谷P1028 数的计算 题解 动态规划入门题
    洛谷P1029 最大公约数和最小公倍数问题 题解
  • 原文地址:https://www.cnblogs.com/cytus/p/9583717.html
Copyright © 2011-2022 走看看