zoukankan      html  css  js  c++  java
  • AAC音频格式详解

    关于AAC音频格式基本情况,可参考维基百科http://en.wikipedia.org/wiki/Advanced_Audio_Coding

    AAC音频格式分析

    AAC音频格式有ADIF和ADTS:

    ADIF:Audio Data Interchange Format 音频数据交换格式。这种格式的特征是可以确定的找到这个音频数据的开始,不需进行在音频数据流中间开始的解码,即它的解码必须在明确定义的开始处进行。故这种格式常用在磁盘文件中。

    ADTS:Audio Data Transport Stream 音频数据传输流。这种格式的特征是它是一个有同步字的比特流,解码可以在这个流中任何位置开始。它的特征类似于mp3数据流格式。

    简单说,ADTS可以在任意帧解码,也就是说它每一帧都有头信息。ADIF只有一个统一的头,所以必须得到所有的数据后解码。且这两种的header的格式也是不同的,目前一般编码后的和抽取出的都是ADTS格式的音频流。

    语音系统对实时性要求较高,基本是这样一个流程,采集音频数据,本地编码,数据上传,服务器处理,数据下发,本地解码

    ADTS是帧序列,本身具备流特征,在音频流的传输与处理方面更加合适。

    ADTS帧结构:

    header

    body

    ADTS帧首部结构:

    序号 长度(bits) 说明
    1 Syncword 12 all bits must be 1
    2 MPEG version 1 0 for MPEG-4, 1 for MPEG-2
    3 Layer 2 always 0
    4 Protection Absent 1 et to 1 if there is no CRC and 0 if there is CRC
    5 Profile 2 the MPEG-4 Audio Object Type minus 1
    6 MPEG-4 Sampling Frequency Index 4 MPEG-4 Sampling Frequency Index (15 is forbidden)
    7 Private Stream 1 set to 0 when encoding, ignore when decoding
    8 MPEG-4 Channel Configuration 3 MPEG-4 Channel Configuration (in the case of 0, the channel configuration is sent via an inband PCE)
    9 Originality 1 set to 0 when encoding, ignore when decoding
    10 Home 1 set to 0 when encoding, ignore when decoding
    11 Copyrighted Stream 1 set to 0 when encoding, ignore when decoding
    12 Copyrighted Start 1 set to 0 when encoding, ignore when decoding
    13 Frame Length 13 this value must include 7 or 9 bytes of header length: FrameLength = (ProtectionAbsent == 1 ? 7 : 9) + size(AACFrame)
    14 Buffer Fullness 11 buffer fullness
    15 Number of AAC Frames 2 number of AAC frames (RDBs) in ADTS frame minus 1, for maximum compatibility always use 1 AAC frame per ADTS frame
    16 CRC 16 CRC if protection absent is 0

    AAC解码

    在解码方面,使用了开源的FAAD,http://www.audiocoding.com/faad2.html

    sdk解压缩后,docs目录有详细的api说明文档,主要用到的有以下几个:

    NeAACDecHandle NEAACAPI NeAACDecOpen(void);
    
    创建解码环境并返回一个句柄
    
    
    
    void NEAACAPI NeAACDecClose(NeAACDecHandle hDecoder);
    
    关闭解码环境
    
    
    
    NeAACDecConfigurationPtr NEAACAPI NeAACDecGetCurrentConfiguration(NeAACDecHandle hDecoder);
    
    获取当前解码器库的配置
    
    
    
    unsigned char NEAACAPI NeAACDecSetConfiguration(NeAACDecHandle hDecoder, NeAACDecConfigurationPtr config);
    
    为解码器库设置一个配置结构
    
    
    
    long NEAACAPI NeAACDecInit(NeAACDecHandle hDecoder, unsigned char *buffer, unsigned long buffer_size, unsigned long *samplerate, unsigned char *channels);
    
    初始化解码器库
    
    
    
    void* NEAACAPI NeAACDecDecode(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo, unsigned char *buffer, unsigned long buffer_size);
    
    解码AAC数据

    对以上api做了简单封装,写了一个解码类,涵盖了FAAD库的基本用法,感兴趣的朋友可以看看

    MyAACDecoder.h:

    /**
     *
     * filename: MyAACDecoder.h
     * summary: convert aac to wave
     * author: caosiyang 
     * email: csy3228@gmail.com
     *
     */
    #ifndef __MYAACDECODER_H__
    #define __MYAACDECODER_H__
     
     
    #include "Buffer.h"
    #include "mytools.h"
    #include "WaveFormat.h"
    #include "faad.h"
    #include <iostream>
    using namespace std;
     
     
    class MyAACDecoder {
    public:
        MyAACDecoder();
        ~MyAACDecoder();
     
        int32_t Decode(char *aacbuf, uint32_t aacbuflen);
     
        const char* WavBodyData() const {
            return _mybuffer.Data();
        }
     
        uint32_t WavBodyLength() const {
            return _mybuffer.Length();
        }
     
        const char* WavHeaderData() const {
            return _wave_format.getHeaderData();
     
        }
     
        uint32_t WavHeaderLength() const {
            return _wave_format.getHeaderLength();
        }
     
    private:
        MyAACDecoder(const MyAACDecoder &dec);
        MyAACDecoder& operator=(const MyAACDecoder &rhs);
     
        //init AAC decoder
        int32_t _init_aac_decoder(char *aacbuf, int32_t aacbuflen);
     
        //destroy aac decoder
        void _destroy_aac_decoder();
     
        //parse AAC ADTS header, get frame length
        uint32_t _get_frame_length(const char *aac_header) const;
     
        //AAC decoder properties
        NeAACDecHandle _handle;
        unsigned long _samplerate;
        unsigned char _channel;
     
        Buffer _mybuffer;
        WaveFormat _wave_format;
    };
     
     
    #endif /*__MYAACDECODER_H__*/

    MyAACDecoder.cpp:

    #include "MyAACDecoder.h"
     
     
    MyAACDecoder::MyAACDecoder(): _handle(NULL), _samplerate(44100), _channel(2), _mybuffer(4096, 4096) {
    }
     
     
    MyAACDecoder::~MyAACDecoder() {
        _destroy_aac_decoder();
    }
     
     
    int32_t MyAACDecoder::Decode(char *aacbuf, uint32_t aacbuflen) {
        int32_t res = 0;
        if (!_handle) {
            if (_init_aac_decoder(aacbuf, aacbuflen) != 0) {
                ERR1(":::: init aac decoder failed ::::");
                return -1;
            }
        }
     
        //clean _mybuffer
        _mybuffer.Clean();
     
        uint32_t donelen = 0;
        uint32_t wav_data_len = 0;
        while (donelen < aacbuflen) {
            uint32_t framelen = _get_frame_length(aacbuf + donelen);
     
            if (donelen + framelen > aacbuflen) {
                break;
            }
     
            //decode
            NeAACDecFrameInfo info;
            void *buf = NeAACDecDecode(_handle, &info, (unsigned char*)aacbuf + donelen, framelen);
            if (buf && info.error == 0) {
                if (info.samplerate == 44100) {
                    //44100Hz
                    //src: 2048 samples, 4096 bytes
                    //dst: 2048 samples, 4096 bytes
                    uint32_t tmplen = info.samples * 16 / 8;
                    _mybuffer.Fill((const char*)buf, tmplen);
                    wav_data_len += tmplen;
                } else if (info.samplerate == 22050) {
                    //22050Hz
                    //src: 1024 samples, 2048 bytes
                    //dst: 2048 samples, 4096 bytes
                    short *ori = (short*)buf;
                    short tmpbuf[info.samples * 2];
                    uint32_t tmplen = info.samples * 16 / 8 * 2;
                    for (int32_t i = 0, j = 0; i < info.samples; i += 2) {
                        tmpbuf[j++] = ori[i];
                        tmpbuf[j++] = ori[i + 1];
                        tmpbuf[j++] = ori[i];
                        tmpbuf[j++] = ori[i + 1];
                    }
                    _mybuffer.Fill((const char*)tmpbuf, tmplen);
                    wav_data_len += tmplen;
                }
            } else {
                ERR1("NeAACDecDecode() failed");
            }
     
            donelen += framelen;
        }
     
        //generate Wave header
        _wave_format.setSampleRate(_samplerate);
        _wave_format.setChannel(_channel);
        _wave_format.setSampleBit(16);
        _wave_format.setBandWidth(_samplerate * 16 * _channel / 8);
        _wave_format.setDataLength(wav_data_len);
        _wave_format.setTotalLength(wav_data_len + 44);
        _wave_format.GenerateHeader();
     
        return 0;
    }
     
     
    uint32_t MyAACDecoder::_get_frame_length(const char *aac_header) const {
        uint32_t len = *(uint32_t *)(aac_header + 3);
        len = ntohl(len); //Little Endian
        len = len << 6;
        len = len >> 19;
        return len;
    }
     
     
    int32_t MyAACDecoder::_init_aac_decoder(char* aacbuf, int32_t aacbuflen) {
        unsigned long cap = NeAACDecGetCapabilities();
        _handle = NeAACDecOpen();
        if (!_handle) {
            ERR1("NeAACDecOpen() failed");
            _destroy_aac_decoder();
            return -1;
        }
     
        NeAACDecConfigurationPtr conf = NeAACDecGetCurrentConfiguration(_handle);
        if (!conf) {
            ERR1("NeAACDecGetCurrentConfiguration() failed");
            _destroy_aac_decoder();
            return -1;
        }
        NeAACDecSetConfiguration(_handle, conf);
     
        long res = NeAACDecInit(_handle, (unsigned char *)aacbuf, aacbuflen, &_samplerate, &_channel);
        if (res < 0) {
            ERR1("NeAACDecInit() failed");
            _destroy_aac_decoder();
            return -1;
        }
        //fprintf(stdout, "SampleRate = %d
    ", _samplerate);
        //fprintf(stdout, "Channel    = %d
    ", _channel);
        //fprintf(stdout, ":::: init aac decoder done ::::
    ");
     
        return 0;
    }
     
     
    void MyAACDecoder::_destroy_aac_decoder() {
        if (_handle) {
            NeAACDecClose(_handle);
            _handle = NULL;
        }
    }

    1.ADTS是个啥

    ADTS全称是(Audio Data Transport Stream),是AAC的一种十分常见的传输格式。

    记得第一次做demux的时候,把AAC音频的ES流从FLV封装格式中抽出来送给硬件解码器时,不能播;保存到本地用pc的播放器播时,我靠也不能播。当时崩溃了,后来通过查找资料才知道。一般的AAC解码器都需要把AAC的ES流打包成ADTS的格式,一般是在AAC ES流前添加7个字节的ADTS header。也就是说你可以吧ADTS这个头看作是AAC的frameheader。

    ADTS AAC
    ADTS_header AAC ES ADTS_header AAC ES
    ...
    ADTS_header AAC ES

    2.ADTS内容及结构

    ADTS 头中相对有用的信息 采样率、声道数、帧长度。想想也是,我要是解码器的话,你给我一堆得AAC音频ES流我也解不出来。每一个带ADTS头信息的AAC流会清晰的告送解码器他需要的这些信息。

    一般情况下ADTS的头信息都是7个字节,分为2部分:

    adts_fixed_header();

    adts_variable_header();


     

    syncword :同步头 总是0xFFF, all bits must be 1,代表着一个ADTS帧的开始

    ID:MPEG Version: 0 for MPEG-4, 1 for MPEG-2

    Layer:always: '00'

    profile:表示使用哪个级别的AAC,有些芯片只支持AAC LC 。在MPEG-2 AAC中定义了3种:

    sampling_frequency_index:表示使用的采样率下标,通过这个下标在 Sampling Frequencies[ ]数组中查找得知采样率的值。

    There are 13 supported frequencies:

    • 0: 96000 Hz
    • 1: 88200 Hz
    • 2: 64000 Hz
    • 3: 48000 Hz
    • 4: 44100 Hz
    • 5: 32000 Hz
    • 6: 24000 Hz
    • 7: 22050 Hz
    • 8: 16000 Hz
    • 9: 12000 Hz
    • 10: 11025 Hz
    • 11: 8000 Hz
    • 12: 7350 Hz
    • 13: Reserved
    • 14: Reserved
    • 15: frequency is written explictly
    channel_configuration: 表示声道数 
    • 0: Defined in AOT Specifc Config
    • 1: 1 channel: front-center
    • 2: 2 channels: front-left, front-right
    • 3: 3 channels: front-center, front-left, front-right
    • 4: 4 channels: front-center, front-left, front-right, back-center
    • 5: 5 channels: front-center, front-left, front-right, back-left, back-right
    • 6: 6 channels: front-center, front-left, front-right, back-left, back-right, LFE-channel
    • 7: 8 channels: front-center, front-left, front-right, side-left, side-right, back-left, back-right, LFE-channel
    • 8-15: Reserved

    frame_length : 一个ADTS帧的长度包括ADTS头和AAC原始流.

    adts_buffer_fullness:0x7FF 说明是码率可变的码流

    3.将AAC打包成ADTS格式

    如果是通过嵌入式高清解码芯片做产品的话,一般情况的解码工作都是由硬件来完成的。所以大部分的工作是把AAC原始流打包成ADTS的格式,然后丢给硬件就行了。

    通过对ADTS格式的了解,很容易就能把AAC打包成ADTS。我们只需得到封装格式里面关于音频采样率、声道数、元数据长度、aac格式类型等信息。然后在每个AAC原始流前面加上个ADTS头就OK了。

    贴上ffmpeg中添加ADTS头的代码,就可以很清晰的了解ADTS头的结构:

    [html] view plain copy
     
    1. int ff_adts_write_frame_header(ADTSContext *ctx,  
    2.                                uint8_t *buf, int size, int pce_size)  
    3. {  
    4.     PutBitContext pb;  
    5.   
    6.     init_put_bits(&pb, buf, ADTS_HEADER_SIZE);  
    7.   
    8.     /* adts_fixed_header */  
    9.     put_bits(&pb, 12, 0xfff);   /* syncword */  
    10.     put_bits(&pb, 1, 0);        /* ID */  
    11.     put_bits(&pb, 2, 0);        /* layer */  
    12.     put_bits(&pb, 1, 1);        /* protection_absent */  
    13.     put_bits(&pb, 2, ctx->objecttype); /* profile_objecttype */  
    14.     put_bits(&pb, 4, ctx->sample_rate_index);  
    15.     put_bits(&pb, 1, 0);        /* private_bit */  
    16.     put_bits(&pb, 3, ctx->channel_conf); /* channel_configuration */  
    17.     put_bits(&pb, 1, 0);        /* original_copy */  
    18.     put_bits(&pb, 1, 0);        /* home */  
    19.   
    20.     /* adts_variable_header */  
    21.     put_bits(&pb, 1, 0);        /* copyright_identification_bit */  
    22.     put_bits(&pb, 1, 0);        /* copyright_identification_start */  
    23.     put_bits(&pb, 13, ADTS_HEADER_SIZE + size + pce_size); /* aac_frame_length */  
    24.     put_bits(&pb, 11, 0x7ff);   /* adts_buffer_fullness */  
    25.     put_bits(&pb, 2, 0);        /* number_of_raw_data_blocks_in_frame */  
    26.   
    27.     flush_put_bits(&pb);  
    28.   
    29.     return 0;  
    30. }  
     
    0
  • 相关阅读:
    css3 @page
    Python:GUI
    Python: simple drawings
    JQuery 实现多个checkbox 只选中一个
    pgwSlideshow.js
    Html5: Drawing with text
    HTML5 Video player jQuery plugin
    cSharp:反射 Reflection
    机器学习基础---无监督学习之异常检测
    机器学习作业---主成分分析PCA
  • 原文地址:https://www.cnblogs.com/cyyljw/p/7569061.html
Copyright © 2011-2022 走看看