zoukankan      html  css  js  c++  java
  • Colorful Tree

    Colorful Tree

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 3373    Accepted Submission(s): 1461


    Problem Description
    There is a tree with n nodes, each of which has a type of color represented by an integer, where the color of node i is ci.

    The path between each two different nodes is unique, of which we define the value as the number of different colors appearing in it.

    Calculate the sum of values of all paths on the tree that has n(n1)2 paths in total.
     
    Input
    The input contains multiple test cases.

    For each test case, the first line contains one positive integers n, indicating the number of node. (2n200000)

    Next line contains n integers where the i-th integer represents ci, the color of node i(1cin)

    Each of the next n1 lines contains two positive integers x,y (1x,yn,xy), meaning an edge between node x and node y.

    It is guaranteed that these edges form a tree.
     
    Output
    For each test case, output "Case #xy" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
     
    Sample Input
    3 1 2 1 1 2 2 3 6 1 2 1 3 2 1 1 2 1 3 2 4 2 5 3 6
     
    Sample Output
    Case #1: 6 Case #2: 29
     
    Source
    #pragma GCC optimize(2)
    
    #include <bits/stdc++.h>
    
    #define lowbit(x) x&(-x)
    typedef long long ll;
    using namespace std;
    const int maxn = 2e5 + 100000;
    ll n;
    ll siz[maxn], sum[maxn], cnt;
    ll color[maxn], vis[maxn];
    struct node {
        int to, nx;
    } o[maxn << 1];
    int head[maxn];
    ll res;
    
    inline void add_edge(int u, int v) {
        o[++cnt] = (node) {v, head[u]};
        head[u] = cnt;
    }
    
    inline void solve(int cur, int fa) {
        siz[cur] = 1;
        ll pre = sum[color[cur]];
        ll e = 0;
        for (register int i = head[cur]; i; i = o[i].nx) {
            int to = o[i].to;
            if (to == fa)continue;
            solve(to, cur);
            siz[cur] += siz[to];
            ll nx = sum[color[cur]] - pre;
            ll fur = nx;
            nx = siz[to] - nx;
            res -= nx * (nx - 1) / 2;
            pre = sum[color[cur]];
            e += fur;
        }
        sum[color[cur]] += siz[cur] - e;
    }
    
    int Case;
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("1.txt", "r", stdin);
    #endif
        while (scanf("%lld", &n) != EOF) {
            ll tot = 0;
            cnt = 0;
            memset(head, 0, sizeof(head));
            memset(vis, 0, sizeof(vis));
            memset(sum,0,sizeof(sum));
            for (register int i = 1; i <= n; ++i) {
                scanf("%d", &color[i]);
                if (!vis[color[i]]) {
                    ++tot;
                    vis[color[i]] = 1;
                }
            }
            for (register int i = 1, u, v; i < n; ++i) {
                scanf("%d%d", &u, &v);
                add_edge(u, v);
                add_edge(v, u);
            }
            res = tot * n * (n - 1) / 2;
            solve(1, -1);
            for (register int i = 1; i <= n; ++i) {
                if (!sum[i])continue;
                ll leave = n - sum[i];
                res -= leave * (leave - 1) / 2;
            }
            printf("Case #%d: ", ++Case);
            printf("%lld
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    《软件架构师的12项修炼》阅读笔记01
    《架构即未来》阅读笔记03
    《一线架构师时间指南》-Refined Architecture阶段
    《架构即未来》阅读笔记02
    《架构即未来》阅读笔记01
    大三下第四周总结
    RPA自动化
    在shell中使用Flask
    用蓝图实现模块化应用
    请求上下文
  • 原文地址:https://www.cnblogs.com/czy-power/p/11451657.html
Copyright © 2011-2022 走看看