zoukankan      html  css  js  c++  java
  • LightOJ

    Find the result of the following code:


    long long pairsFormLCM( int n ) {
        long long res = 0;
        for( int i = 1; i <= n; i++ )
            for( int j = i; j <= n; j++ )
               if( lcm(i, j) == n ) res++; // lcm means least common multiple
        return res;
    }


    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).


    Input
    Input starts with an integer T (≤ 200), denoting the number of test cases.


    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).


    Output
    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.


    Sample Input
    15
    2
    3
    4
    6
    8
    10
    12
    15
    18
    20
    21
    24
    25
    27
    29
    Sample Output
    Case 1: 2
    Case 2: 2
    Case 3: 3
    Case 4: 5
    Case 5: 4
    Case 6: 5
    Case 7: 8
    Case 8: 5
    Case 9: 8
    Case 10: 8
    Case 11: 5
    Case 12: 11
    Case 13: 3
    Case 14: 4

    Case 15: 2

    求小于等于n的数中最小公倍数等于N的组合而且 i<=j  ;

    #include<stack>
    #include<queue>
    #include<math.h>
    #include<vector>
    #include<string>
    #include<stdio.h>
    #include<map>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    #define maxn 1000005
    #define maxm 10000005
    #define MAXN 100005
    #define MAXM 10005
    #define mem(a,b) memset(a,b,sizeof(a))
    #define ll unsigned long long
    #define inf 0x3f3f3f3f
    using namespace std;
    bool vis[maxm+5];
    ll tot;
    ll p[maxn];
    void get_prime(){
         tot=0;
        mem(vis,true);
        for(ll i=2;i<=maxm;i++){
            if(vis[i]){
                p[tot++]=i;
                for(ll j=i*i;j<=maxm;j+=i)vis[j]=false;
            }
        }
    }
    ll f(ll n){
        if(n==1)return 1;
        ll ans=1;
        for(int i=0;i<tot;i++){
            if(n%p[i]==0){
                ll x=0;
               while(n%p[i]==0){x++;n/=p[i];}
                ans*=(2*x+1);
            }
        }
        if(n!=1)ans*=(2*1+1);
        return ans/2+1;
    }
    int main(){
        get_prime();
        int t,test=0;
        scanf("%d",&t);
        while(t--){
        ll n;
        scanf("%lld",&n);
       printf("Case %d: %lld
    ",++test,f(n));
        }
    }
    

  • 相关阅读:
    水平居中、垂直居中,总有一款适合你的
    HTML利用posotion属性定位 小技巧
    angular2 如何使用websocket
    angular2 引入jquery
    HTML+CSS学习笔记
    用eclipse 搭建struts2环境
    html对URL传参数进行解析
    angular2上传图片
    当div元素内的内容超出其宽度时,自动隐藏超出的内容
    关于引用对象的使用的一点小理解
  • 原文地址:https://www.cnblogs.com/da-mei/p/9053225.html
Copyright © 2011-2022 走看看