zoukankan      html  css  js  c++  java
  • 机器学习七--回归--多元线性回归Multiple Linear Regression

    一、不包含分类型变量

    from numpy import genfromtxt
    import numpy as np
    from sklearn import datasets,linear_model
    path=r'D:daachengPythonPythonCodemachineLearningDelivery.csv'
    data=genfromtxt(path,delimiter=',')
    print(data)
    x=data[:,:-1]
    y=data[:,-1]
    regr=linear_model.LinearRegression()#创建模型
    regr.fit(x,y)
    #y=b0+b1*x1+b2*x2
    print(regr.coef_)#b1,b2
    print(regr.intercept_)#b0
    Xpred=[[102,6]]
    Ypred=regr.predict(Xpred)#预测
    print(Ypred)

    二、包含分类型变量

    转换后:

    import numpy as np
    from sklearn import datasets,linear_model
    from numpy import genfromtxt
    path=r'D:daachengPythonPythonCodemachineLearningDelivery_Dummy.csv'
    data=genfromtxt(path,delimiter=',')
    data=data[1:]
    x=data[:,:-1]
    y=data[:,-1]
    print(x)
    print(y)
    regr=linear_model.LinearRegression()
    regr.fit(x,y)
    print(regr.coef_)#b1,b2,b3,b4,b5
    print(regr.intercept_)#b0

  • 相关阅读:
    hdu 4525(数学)
    hdu 4524(模拟)
    hdu 4523(大整数)
    hdu 4517(递推枚举统计)
    hdu 4520
    hdu 4519(数学题)
    hdu 4514(树的直径+并查集)
    hdu 4510(模拟)
    hdu 2089(数位DP)
    hdu 4506(数学,循环节+快速幂)
  • 原文地址:https://www.cnblogs.com/daacheng/p/8111597.html
Copyright © 2011-2022 走看看