zoukankan      html  css  js  c++  java
  • ZOJ 3212 K-Nice

    K-Nice

    Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

    This is a super simple problem. The description is simple, the solution is simple. If you believe so, just read it on. Or if you don't, just pretend that you can't see this one.

    We say an element is inside a matrix if it has four neighboring elements in the matrix (Those at the corner have two and on the edge have three). An element inside a matrix is called "nice" when its value equals the sum of its four neighbors. A matrix is called "k-nice" if and only if k of the elements inside the matrix are "nice".

    Now given the size of the matrix and the value of k, you are to output any one of the "k-nice" matrix of the given size. It is guaranteed that there is always a solution to every test case.

    Input

    The first line of the input contains an integer T (1 <= T <= 8500) followed by T test cases. Each case contains three integers nmk (2 <= nm <= 15, 0 <= k <= (n - 2) * (m - 2)) indicating the matrix size n * m and it the "nice"-degree k.

    Output

    For each test case, output a matrix with n lines each containing m elements separated by a space (no extra space at the end of the line). The absolute value of the elements in the matrix should not be greater than 10000.

    Sample Input

    2
    4 5 3
    5 5 3
    

    Sample Output

    2 1 3 1 1
    4 8 2 6 1
    1 1 9 2 9
    2 2 4 4 3
    0 1 2 3 0
    0 4 5 6 0
    0 0 0 0 0
    0 0 0 0 0
    0 0 0 0 0
    

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    int n,m,k;
    int a[20][20];
    int dir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d%d",&n,&m,&k);
            int p=1;int q=1;
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<m;j++)
                {
                    a[i][j]=1;
                }
            }
            for(int i=1;i<=k;i++)
            {
                a[p][q]=0;
                for(int k=0;k<4;k++)
                {
                    a[p+dir[k][0]][q+dir[k][1]]=0;
                }
                if(q==m-2)
                {
                    p++;
                    q=1;
                }
                else
                {
                    q++;
                }
            }
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<m;j++)
                {
                    if(j!=m-1)
                        printf("%d ",a[i][j]);
                    else
                        printf("%d
    ",a[i][j]);
                }
            }
        }
        return 0;
    }

  • 相关阅读:
    Locust性能测试-环境准备与基本使用 转自:悠悠
    Locust性能测试_先登录场景案例
    python_协程
    python_进程池以及线程池
    python_并发与通信
    python_进程与线程的补充
    python_并行与并发、多线程
    Hash算法:双重散列
    AVL树的插入和删除
    查找最小生成树:普里姆算法算法(Prim)算法
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228559.html
Copyright © 2011-2022 走看看