zoukankan      html  css  js  c++  java
  • ZOJ 3204 Connect them

    Connect them

    Time Limit: 1 Second      Memory Limit: 32768 KB

    You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.

    Given n and each cij , find the cheapest way to connect computers.

    Input

    There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.

    The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cjicii = 0, 1 <= ij <= n.

    Output

    For each test case, if you can connect the computers together, output the method in in the following fomat:

    i1 j1 i1 j1 ......

    where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.

    Sample Input

    2
    3
    0 2 3
    2 0 5
    3 5 0
    2
    0 0
    0 0
    
    

    Sample Output

    1 2 1 3
    -1
    

    Hints:
    A solution A is a line of p integers: a1a2, ...ap.
    Another solution B different from A is a line of q integers: b1b2, ...bq.
    A is lexicographically smaller than B if and only if:
    (1) there exists a positive integer r (r <= pr <= q) such that ai = bi for all 0 < i < r and ar < br 
    OR

    (2) p < q and ai = bi for all 0 < i <= p

    最小生成树:

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    const int INF=1e5;
    struct Node
    {
        int x;int y;
        int value;
    }a[10005];
    int cmp(Node a,Node b)
    {
        if(a.value==b.value)
        {
            if(a.x==b.x)
            {
                return a.y<b.y;
            }
            return a.x<b.x;
        }
        else
            return a.value<b.value;
    }
    struct node
    {
        int x;
        int y;
    }ans[INF+5];
    int cmp2(node a,node b)
    {
        if(a.x==b.x)
            return a.y<b.y;
        else
            return a.x<b.x;
    }
    int n;
    int father[INF+5];
    int find(int x)
    {
        if(father[x]!=x)
            father[x]=find(father[x]);
        return father[x];
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            int tot=0;
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    scanf("%d",&a[++tot].value);
                    a[tot].x=i;
                    a[tot].y=j;
                    if(a[tot].value==0)
                        a[tot].value=INF;
                }
            }
            sort(a+1,a+tot+1,cmp);
            for(int i=1;i<=n;i++)
                father[i]=i;
            int cot=0;
            for(int i=1;i<=tot;i++)
            {
                if(a[i].value==INF)
                    continue;
                int xx=find(a[i].x);
                int yy=find(a[i].y);
                if(xx!=yy)
                {
                    father[xx]=yy;
                    ans[++cot].x=a[i].x;
                    ans[cot].y=a[i].y;
                }
            }
            int root=find(1);
            bool res=true;
            for(int i=2;i<=n;i++)
            {
                find(i);
                if(father[i]!=root)
                    res=false;
            }
            if(!res)
                printf("-1
    ");
            else
            {
                sort(ans+1,ans+1+cot,cmp2);
                for(int i=1;i<=cot;i++)
                {
                    if(i==cot)
                        printf("%d %d
    ",ans[i].x,ans[i].y);
                    else
                        printf("%d %d ",ans[i].x,ans[i].y);
                }
            }
            
            
        }
        return 0;
    }



  • 相关阅读:
    xpage 获取 附件
    Win8.1应用开发之离线缓存
    分布式系统设计系列 -- 基本原理及高可用策略
    hdu3652(数位dp)
    HDU 4869 Turn the pokers
    ubuntu 安装mysql, 以及全然又一次安装的方法
    Wildcard matching
    并发编程:创建进程 join方法 进程间的数据隔离问题 进程对象以及其他方法 守护进程 互斥锁
    网络通信 : 粘包解决的实例 socketserver模块 udp的使用 简易版QQ的实现 异常处理机制的知识点
    TCP通信: scoket模块 黏包问题 连接循环 通信循环
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228562.html
Copyright © 2011-2022 走看看