zoukankan      html  css  js  c++  java
  • CodeForces 24D Broken robot (概率DP)

    D. Broken robot
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you understood that it is broken and behaves rather strangely (randomly). The board consists of N rows and Mcolumns of cells. The robot is initially at some cell on the i-th row and the j-th column. Then at every step the robot could go to some another cell. The aim is to go to the bottommost (N-th) row. The robot can stay at it's current cell, move to the left, move to the right, or move to the cell below the current. If the robot is in the leftmost column it cannot move to the left, and if it is in the rightmost column it cannot move to the right. At every step all possible moves are equally probable. Return the expected number of step to reach the bottommost row.

    Input

    On the first line you will be given two space separated integers N andM (1 ≤ N, M ≤ 1000). On the second line you will be given another two space separated integers i and j (1 ≤ i ≤ N, 1 ≤ j ≤ M) — the number of the initial row and the number of the initial column. Note that, (1, 1) is the upper left corner of the board and (N, M) is the bottom right corner.

    Output

    Output the expected number of steps on a line of itself with at least 4digits after the decimal point.

    Examples
    input
    10 10
    10 4
    
    output
    0.0000000000
    
    input
    10 14
    5 14
    
    output
    18.0038068653
    概率DP
    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    #include <vector>
    
    using namespace std;
    int n,m;
    int x,y;
    double dp[1005][1005];
    int main()
    {
        scanf("%d%d",&n,&m);
        scanf("%d%d",&x,&y);
        double p1=1.0/3;
        double p2=1.0/4;
        double p3=1.0/2;
        for(int i=n-1;i>=x;i--)
        {
            for(int t=0;t<=50;t++)
            {
                for(int j=1;j<=m;j++)
                {
                    if(m==1)
                        dp[i][j]=(dp[i+1][j]*p3+1)/(1-p3);
                    else if(j==1)
                        dp[i][j]=(dp[i][j+1]*p1+dp[i+1][j]*p1+1)/(1-p1);
                    else if(j==m)
                        dp[i][j]=(dp[i][j-1]*p1+dp[i+1][j]*p1+1)/(1-p1);
                    else
                        dp[i][j]=(dp[i][j+1]*p2+dp[i][j-1]*p2+dp[i+1][j]*p2+1)/(1-p2);
                }
            }
        }
        printf("%.6f
    ",dp[x][y]);
        return 0;
    }
    


  • 相关阅读:
    Introduce myself
    二叉搜索树的后序遍历序列(剑指offer-23)
    从上到下打印二叉树(剑指offer-22)
    二叉树的深度(剑指offer-38)
    不用加减乘除做加法(剑指offer-48)
    栈的压入、弹出序列(剑指offer-21)
    Java容器
    包含min函数的栈(剑指offer-20)
    在Docker中创建Mongodb数据库
    词向量聚类实验
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228598.html
Copyright © 2011-2022 走看看