zoukankan      html  css  js  c++  java
  • ZOJ 3469Food Delivery(区间DP)

    Food Delivery

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.

    Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters. And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.

    You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure Index. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ithperson will gain Bi Displeasure Index per minute.

    If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Indexas low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.

    Input

    The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0),X ( X >= 0 ), then N lines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.

    You can safely assume that all numbers in the input and output will be less than 231 - 1.

    Please process to the end-of-file.

    Output

    For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.

    Sample Input

    5 1 0
    1 1
    2 2
    3 3
    4 4
    5 5

    Sample Output

    55


    区间DP

    dp[i][j][k] 表示i到j这个区间送完了,快递小哥在哪个端点。

    关于区间DP,可以参照这个博客大笑

    http://blog.csdn.net/dacc123/article/details/50885903

    #include <iostream>
     #include <string.h>
     #include <stdlib.h>
     #include <algorithm>
     #include <math.h>
     #include <stdio.h>
    
     using namespace std;
     #define MAX 100000000
     int n,v,x;
    struct Node
    {
        int xi;
        int bi;
    }a[1005];
    int dp[1005][1005][2];
    int cmp(Node a,Node b)
    {
        return a.xi<b.xi;
    }
    int sum[1005];
    int main()
    {
        while(scanf("%d%d%d",&n,&v,&x)!=EOF)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d%d",&a[i].xi,&a[i].bi);
            }
             a[n+1].xi=x;a[n+1].bi=0;
            sort(a+1,a+n+2,cmp);
            int pos=0;
            sum[0]=0;
            for(int i=1;i<=n+1;i++)
                sum[i]=sum[i-1]+a[i].bi;
            for(int j=1;j<=n+1;j++)
                if(a[j].xi==x)
                    pos=j;
            for(int i=0;i<=n+1;i++)
                for(int j=0;j<=n+1;j++)
                   dp[i][j][0]=MAX,dp[i][j][1]=MAX;
            dp[pos][pos][0]=0;
            dp[pos][pos][1]=0;
            for(int i=pos;i>=1;i--)
            {
                for(int j=pos;j<=n+1;j++)
                {
                    if(i==j)
                        continue;
                    int num=sum[i-1]-sum[0]+sum[n+1]-sum[j];
                    dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j].xi-a[j-1].xi)*(a[j].bi+num));
                    dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j].xi-a[i].xi)*(a[j].bi+num));
                    dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1].xi-a[i].xi)*(a[i].bi+num));
                    dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j].xi-a[i].xi)*(a[i].bi+num));
                }
            }
            printf("%d
    ",min(dp[1][n+1][0],dp[1][n+1][1])*v);
    
        }
        return 0;
    }


  • 相关阅读:
    转:CTE(公共表表达式)——WITH子句
    排名函数——ROW_NUMBER()、RANK()、DENSE_RANK()和NTILE(n)
    深层拷贝和浅层拷贝
    Jmeter如何连接数据库Mysql
    java执行cmd命令并获取输出结果
    Java 读取Excel2007 jar包冲突的问题(org.apache.poi.POIXMLException: java.lang.reflect.InvocationTargetException)
    读写文件
    eclipse报jvm terminated.exitcode=2异常解决办法
    Appium常用的API函数
    自动化生成html报告
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228744.html
Copyright © 2011-2022 走看看