zoukankan      html  css  js  c++  java
  • POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

    Common Subsequence
    Time Limit: 1000MS Memory Limit: 10000K
    Total Submissions: 44464 Accepted: 18186
    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp
    Sample Output

    4
    2
    0

    裸的最长公共子序列问题:
    状态转移方程:
    if(s1[i]==s2[j])
    dp[i][j]=dp[i-1][j-1]+1;
    else
    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <math.h>
    #include <stdlib.h>
    #include <string>
    
    using namespace std;
    char s1[300];
    char s2[300];
    int dp[300][300];
    int main()
    {
    
        while(scanf("%s%s",&s1,&s2)!=EOF)
        {
            int len1=strlen(s1);
            int len2=strlen(s2);
                     memset(dp,0,sizeof(dp));
            for(int i=0;i<len1;i++)
            {
                for(int j=0;j<len2;j++)
                {
                    if(s1[i]==s2[j])
                        dp[i+1][j+1]=dp[i][j]+1;
                    else
                        dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    
                }
            }
            cout<<dp[len1][len2]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    一些你可能用到的代码
    iOS 键盘下去的方法
    iOS设计模式汇总
    随笔
    Spring cloud config 分布式配置中心 (三) 总结
    Spring cloud config 分布式配置中心(二) 客户端
    Spring cloud config 分布式配置中心(一) 服务端
    jdbcUrl is required with driverClassName spring boot 2.0版本
    JpaRepository接口找不到 spring boot 项目
    解决IntelliJ “Initialization failed for 'https://start.spring.io'
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228842.html
Copyright © 2011-2022 走看看