zoukankan      html  css  js  c++  java
  • POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

    Common Subsequence
    Time Limit: 1000MS Memory Limit: 10000K
    Total Submissions: 44464 Accepted: 18186
    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp
    Sample Output

    4
    2
    0

    裸的最长公共子序列问题:
    状态转移方程:
    if(s1[i]==s2[j])
    dp[i][j]=dp[i-1][j-1]+1;
    else
    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <math.h>
    #include <stdlib.h>
    #include <string>
    
    using namespace std;
    char s1[300];
    char s2[300];
    int dp[300][300];
    int main()
    {
    
        while(scanf("%s%s",&s1,&s2)!=EOF)
        {
            int len1=strlen(s1);
            int len2=strlen(s2);
                     memset(dp,0,sizeof(dp));
            for(int i=0;i<len1;i++)
            {
                for(int j=0;j<len2;j++)
                {
                    if(s1[i]==s2[j])
                        dp[i+1][j+1]=dp[i][j]+1;
                    else
                        dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    
                }
            }
            cout<<dp[len1][len2]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    如何在Grid中做出快捷菜单效果?
    ExtJs FormPanel布局
    wpf 中获取ComboBox中选定的文本值
    delphi中的dbgrid使用
    Delphi修改Access密码,压缩与修复,建立Access数据库文件
    关于OS X系统root账号的激活及密码更改
    Delphi过程函数传递参数的几种方式
    Eclipse里的快捷键
    Delphi封装类到DLL
    Delphi Project 之工程选项(Project Options)
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228842.html
Copyright © 2011-2022 走看看