zoukankan      html  css  js  c++  java
  • POJ-1458 Common Subsequence(线性动规,最长公共子序列问题)

    Common Subsequence
    Time Limit: 1000MS Memory Limit: 10000K
    Total Submissions: 44464 Accepted: 18186
    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp
    Sample Output

    4
    2
    0

    裸的最长公共子序列问题:
    状态转移方程:
    if(s1[i]==s2[j])
    dp[i][j]=dp[i-1][j-1]+1;
    else
    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <math.h>
    #include <stdlib.h>
    #include <string>
    
    using namespace std;
    char s1[300];
    char s2[300];
    int dp[300][300];
    int main()
    {
    
        while(scanf("%s%s",&s1,&s2)!=EOF)
        {
            int len1=strlen(s1);
            int len2=strlen(s2);
                     memset(dp,0,sizeof(dp));
            for(int i=0;i<len1;i++)
            {
                for(int j=0;j<len2;j++)
                {
                    if(s1[i]==s2[j])
                        dp[i+1][j+1]=dp[i][j]+1;
                    else
                        dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    
                }
            }
            cout<<dp[len1][len2]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    try里有return,finally 里还会执行吗?
    OKR与KPI
    读阿里规范笔记
    Maven lifeCycle简要说明
    LK AH 技术对比
    HTTP请求 工具类
    HTTPS 流程
    指数基金投资指南-读书笔记
    mybatis-generator
    《富爸爸穷爸爸》---读后感
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228842.html
Copyright © 2011-2022 走看看