zoukankan      html  css  js  c++  java
  • 2017 级课堂测试试卷—数据清洗

    石家庄铁道大学2019年秋季

      2017 课堂测试试卷—数据清洗

    课程名称: 大型数据库应用技术  任课教师 王建民   考试时间: 100 分钟

    Result文件数据说明:

    Ip106.39.41.166,(城市)Date10/Nov/2016:00:01:02 +0800,(日期)Day10,(天数)Traffic: 54 ,(流量)Type: video,(类型:视频video或文章article

    Id: 8701(视频或者文章的id

    测试要求:

    1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中

    两阶段数据清洗:

    1)第一阶段:把需要的信息从原始日志中提取出来

    ip:    199.30.25.88time:  10/Nov/2016:00:01:03 +0800traffic:  62文章: article/11325视频: video/3235

    2)第二阶段:根据提取出来的信息做精细化操作

    ip--->城市 cityIPdate--> time:2016-11-10 00:01:03day: 10traffic:62type:article/videid:11325

    3hive数据库表结构:

    create table data(  ip string,  time string , day string, traffic bigint,type string, id   string )

    2、数据处理:

    ·统计地区最受欢迎的视频/文章的Top10访问次数 (video/article

    ·按照地市统计最受欢迎的Top10课程 (ip

    ·按照流量统计最受欢迎的Top10课程 (traffic

    3、数据可视化:将统计结果倒入MySql数据库中,通过图形化展示的方式展现出来。

    ******************************************************************************

    说明:

    运行环境:MyEclipse(linux外面)

    我的理解是有错误的,这些代码都是之前那11个改编的。但确实是能实现简单的清洗。感谢韩代表知道我配置环境*.*

    数据清洗:

     1 package mapreduce1;
     2 
     3 import java.io.IOException;
     4 import java.util.ArrayList;
     5 import java.util.List;
     6 import org.apache.hadoop.conf.Configuration;
     7 import org.apache.hadoop.fs.FileSystem;
     8 import org.apache.hadoop.fs.Path;  
     9 import org.apache.hadoop.io.Text;  
    10 import org.apache.hadoop.mapreduce.Job;  
    11 import org.apache.hadoop.mapreduce.Mapper;  
    12 import org.apache.hadoop.mapreduce.Reducer;  
    13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
    14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;  
    15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
    16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;  
    17 public class Result_1{  
    18 
    19     static int Sum=0;
    20     public static class Map extends Mapper<Object , Text , Text,Text>{  
    21     private static Text Name =new Text();  
    22     private static Text num=new Text();  
    23     public void map(Object key,Text value,Context context) throws IOException, InterruptedException{  
    24     String line=value.toString();  
    25     String arr[]=line.split(",");  
    26         Name.set(arr[0]);
    27         String trm =arr[3].trim();
    28         num.set(trm);
    29         System.out.println(num);
    30     context.write(Name,num);  
    31     }  
    32     }  
    33     public static class Reduce extends Reducer< Text, Text,Text, Text>{  
    34     int i=0;
    35     public void reduce(Text key,Iterable<Text> values,Context context) throws IOException, InterruptedException{  
    36         Text num=new Text();
    37         for(Text val:values){  
    38             num=val;
    39             Sum+=1;
    40             }  
    41         String mid=new String();
    42         mid=String.valueOf(Sum);
    43         mid=num.toString()+"	"+mid;
    44         num.set(mid);
    45         context.write(key,num);
    46         System.out.println(Sum);
    47         }  
    48          }  
    49     public static int run()throws IOException, ClassNotFoundException, InterruptedException
    50     {
    51         Configuration conf=new Configuration();  
    52         conf.set("fs.defaultFS", "hdfs://192.168.1.100:9000");
    53         FileSystem fs =FileSystem.get(conf);
    54         Job job =new Job(conf,"Result_1");  
    55         job.setJarByClass(Result_1.class);  
    56         job.setMapperClass(Map.class);  
    57         job.setReducerClass(Reduce.class);  
    58         job.setOutputKeyClass(Text.class);  
    59         job.setOutputValueClass(Text.class);  
    60         job.setInputFormatClass(TextInputFormat.class);  
    61         job.setOutputFormatClass(TextOutputFormat.class);  
    62         Path in=new Path("hdfs://192.168.1.100:9000/mymapreduce1/in/result.txt");  
    63         Path out=new Path("hdfs://192.168.1.100:9000/mymapreduce1/out_result");  
    64         FileInputFormat.addInputPath(job,in);  
    65         fs.delete(out,true);
    66         FileOutputFormat.setOutputPath(job,out);  
    67         return(job.waitForCompletion(true) ? 0 : 1);  
    68     }
    69         public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{  
    70     
    71             run();
    72         }  
    73         }  

    结果:

    简单排序
    1
    package mapreduce1; 2 3 import java.io.IOException; 4 import java.util.ArrayList; 5 import java.util.List; 6 7 import org.apache.hadoop.conf.Configuration; 8 import org.apache.hadoop.fs.FileSystem; 9 import org.apache.hadoop.fs.Path; 10 import org.apache.hadoop.io.IntWritable; 11 import org.apache.hadoop.io.Text; 12 import org.apache.hadoop.io.WritableComparable; 13 import org.apache.hadoop.io.WritableComparator; 14 import org.apache.hadoop.mapreduce.Job; 15 import org.apache.hadoop.mapreduce.Mapper; 16 import org.apache.hadoop.mapreduce.Reducer; 17 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 18 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 19 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 20 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 21 public class Result_2 { 22 23 public static List<String> Names=new ArrayList<String>(); 24 public static List<String> Values=new ArrayList<String>(); 25 public static List<String> Texts=new ArrayList<String>(); 26 public static class Sort extends WritableComparator { 27 public Sort(){ 28 //这里就是看你map中填的输出key是什么数据类型,就给什么类型 29 super(IntWritable.class,true); 30 } 31 @Override 32 public int compare(WritableComparable a, WritableComparable b) { 33 return -a.compareTo(b);//加个负号就是倒序,把负号去掉就是正序。 34 } 35 } 36 public static class Map extends Mapper<Object , Text , IntWritable,Text >{ 37 private static Text Name=new Text(); 38 private static IntWritable num=new IntWritable(); 39 public void map(Object key,Text value,Context context)throws IOException, InterruptedException 40 { 41 String line=value.toString(); 42 String mid=new String(); 43 String arr[]=line.split(" "); 44 if(!arr[0].startsWith(" ")) 45 { 46 num.set(Integer.parseInt(arr[2])); 47 mid=arr[0]+" "+arr[1]; 48 Name.set(mid); 49 context.write(num, Name); 50 } 51 52 } 53 } 54 public static class Reduce extends Reducer< IntWritable, Text, Text, IntWritable>{ 55 private static IntWritable result= new IntWritable(); 56 int i=0; 57 58 public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{ 59 for(Text val:values){ 60 61 if(i<10) 62 {i=i+1; 63 String mid=new String(); 64 mid=val.toString(); 65 String arr[]=mid.split(" "); 66 Texts.add(arr[1]); 67 Names.add(arr[0]); 68 Values.add(key.toString()); 69 } 70 context.write(val,key); 71 } 72 } 73 } 74 75 76 77 78 79 public static int run()throws IOException, ClassNotFoundException, InterruptedException{ 80 Configuration conf=new Configuration(); 81 conf.set("fs.defaultFS", "hdfs://192.168.1.100:9000"); 82 FileSystem fs =FileSystem.get(conf); 83 Job job =new Job(conf,"Result_2"); 84 job.setJarByClass(Result_2.class); 85 job.setMapperClass(Map.class); 86 job.setReducerClass(Reduce.class); 87 job.setSortComparatorClass(Sort.class); 88 job.setOutputKeyClass(IntWritable.class); 89 job.setOutputValueClass(Text.class); 90 job.setInputFormatClass(TextInputFormat.class); 91 job.setOutputFormatClass(TextOutputFormat.class); 92 Path in=new Path("hdfs://192.168.1.100:9000/mymapreduce1/out_result/part-r-00000"); 93 Path out=new Path("hdfs://192.168.1.100:9000/mymapreduce1/out_result1"); 94 FileInputFormat.addInputPath(job,in); 95 fs.delete(out,true); 96 FileOutputFormat.setOutputPath(job,out); 97 return(job.waitForCompletion(true) ? 0 : 1); 98 99 100 } 101 public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{ 102 run(); 103 for(String n:Names) 104 { 105 System.out.println(n); 106 } 107 } 108 }

    结果:

     

  • 相关阅读:
    hadoop ha模式下,kill active的namenode节点后,standby的namenode节点没能自动启动
    Hadoop2.6.5单机安装
    hadoop HA集群搭建
    hadoop搭建HA集群之后不能自动切换namenode
    hadoop集群之HDFS和YARN启动和停止命令
    查看CentOS7 监听端口命令
    JournalNode的作用
    Secondary NameNode:它究竟有什么作用?
    CentOS7查看和关闭防火墙
    关于Hosts与network的异同之处
  • 原文地址:https://www.cnblogs.com/daisy99lijing/p/11853896.html
Copyright © 2011-2022 走看看