这种东西到现在才学……
考虑 (T) 为根的最短路树,一条路径一定是树上边和非树边交错。
我们只管非树边,对于一条路径,非树边构成一个序列 (L),相邻两条路径 (left(u_1,v_1 ight)) ,(left(u_2,v_2 ight)) 显然一定满足 (u_2) 是 (v_1) 的祖先。
有了这个性质,我们可以解决这个问题。
考虑最后一条边的转移。要么是转移到答案,即 (dis_u + val + dis_v),要么再选择一条边转移,即 (dis_u' = dis_u + val + dis_{u,v}),其中 (v) 是下一条边的 (u) 的最近祖先端点。
显然可以用堆维护。由于答案是两个转移式结合,显然还是太繁了。不如直接把所有边权改为 (val' = val + dis_v - dis_u),那么显然经过一条边只是最短路的增量。
每次一条边的转移直接把距离加上 (val') 即可。
调试的时候把最短路数组和左偏树数组混用了 /px
#include <bits/stdc++.h>
const int MAXN = 5010;
const int MAXE = 200010;
const int MAXP = 2000000;
const double eps = 1e-6;
int n, m;
int xs[MAXE], ys[MAXE];
double vs[MAXE], E, dis[MAXN];
std::vector<int> G[MAXN], el[MAXN];
inline bool eq(double x) { return -eps < x && x < eps; }
struct node {
int to, ls, rs; double val;
} tree[MAXP];
int tot;
int dx[MAXP];
int merge(int x, int y) {
if (!x || !y) return x | y;
if (tree[x].val > tree[y].val) std::swap(x, y);
int now = ++tot; node & t= tree[now] = tree[x];
t.rs = merge(t.rs, y);
if (dx[t.ls] < dx[t.rs]) std::swap(t.ls, t.rs);
dx[now] = dx[t.rs] + 1;
return now;
}
void shortestpath() {
for (int i = 1; i <= m; ++i)
G[ys[i]].push_back(i);
for (int i = 0; i < n; ++i)
dis[i] = 1e20;
dis[n] = 0;
static bool vis[MAXN];
for (int i = 1; i <= n; ++i) {
int at = 0;
for (int j = 1; j <= n; ++j)
if (!vis[j] && dis[j] < dis[at])
at = j;
vis[at] = true;
const int SZ = G[at].size();
for (int j = 0; j != SZ; ++j) {
int u = G[at][j];
dis[xs[u]] = std::min(dis[xs[u]], dis[at] + vs[u]);
}
}
memset(vis, 0, n + 1);
for (int i = 1; i <= n; ++i) G[i].clear();
for (int i = 1; i <= m; ++i)
if (eq(-dis[xs[i]] + dis[ys[i]] + vs[i]))
if (!vis[xs[i]]) {
vis[xs[i]] = true;
G[ys[i]].push_back(xs[i]);
}
for (int i = 1; i <= m; ++i)
el[xs[i]].push_back(i);
}
int rt[MAXN];
void dfs(int u, int fa = 0) {
rt[u] = rt[fa];
const int LZ = el[u].size();
bool fir = false;
for (int i = 0; i != LZ; ++i) {
int at = el[u][i];
double v = dis[ys[at]] + vs[at] - dis[u];
if (v < eps && !fir) { fir = true; continue; }
++tot;
tree[tot].to = ys[at];
tree[tot].val = v;
rt[u] = merge(rt[u], tot);
}
const int SZ = G[u].size();
for (int i = 0; i != SZ; ++i)
dfs(G[u][i], u);
}
struct qs {
int rt; double v;
bool operator < (const qs & b) const {
return v > b.v;
}
} ;
std::priority_queue<qs> q;
qs trans(int rt, double v) {
qs res;
res.rt = rt, res.v = v + tree[rt].val;
return res;
}
int main() {
std::ios_base::sync_with_stdio(false), std::cin.tie(0);
std::cin >> n >> m >> E;
for (int i = 1; i <= m; ++i)
std::cin >> xs[i] >> ys[i] >> vs[i];
shortestpath();
dfs(n);
++tot; tree[tot].to = 1;
tree[tot].val = dis[1];
q.push(trans(tot, 0));
int ans = 0;
while (true) {
qs x = q.top(); q.pop();
E -= x.v;
if (E + eps <= 0) break;
++ans;
if (int t = rt[tree[x.rt].to])
q.push(trans(t, x.v));
x.v -= tree[x.rt].val;
x.rt = merge(tree[x.rt].ls, tree[x.rt].rs);
if (x.rt) q.push(trans(x.rt, x.v));
}
std::cout << ans << std::endl;
return 0;
}