zoukankan      html  css  js  c++  java
  • 最大权闭合子图的一类问题

    最近想到不会上下界,所以重学了网络流的一些理论(貌似还是不会本质上的东西)

    然后人太笨,发现不会最大权闭合子图了。

    具体的就是一个依赖关系图(显然有向)。建图方法繁多。

    核心的思想,就是把正的贡献全部选,负的贡献都不选,建图跑最小割,加边上限制。

    对于正的贡献割掉表示不选,负的表示选,那么就可以总正边权减去最小割得到答案。

    对于 最优选择,带有或的最大权闭合子图。用法挺深刻的。

    考虑网格图的二分图染色,自然ST连边是类似的,这道题中,依赖限制是负边权,那么ST连出的边都代表原图的负边权。

    那么没有别的边可用,只能拆点了。考虑拆出的点里面的边代表正边权,那么开始考虑限制。

    表示依赖的边,是不能割的,所以填INF。(然而在 [Ceoi2008]order 中,有租用,是不影响选不选的,所以依赖边不能填 INF,而是填租用边权。)

    考虑最优选择这道题,它的依赖有两种,那么分别在各自增广路上考虑。

    那么建出了类似于 (B_1 ightarrow A_1 ightarrow B_2) 的边即可,其中,(A_1) 的入度为 (1),这样才满足多组限制。

    有些内容跳过了,具体这道题可以看网上Blog。

    如果考场上忘记了建图套路,那么就提取出一个增广路凑一下吧/cy,正确性只要试着割每条边验证一下。

  • 相关阅读:
    cocos2dx——九宫格CCScale9Sprite
    COCOS学习笔记--TexturePacker使用详解
    leetcode 旋转数组
    leetcode 从排序数组中删除重复项
    使用javascript随机生成斗地主玩家手牌
    模仿w3c school的示例导航栏
    c#中快速排序的学习
    常用语法梳理
    技巧类
    markdown备忘
  • 原文地址:https://www.cnblogs.com/daklqw/p/11993826.html
Copyright © 2011-2022 走看看