zoukankan      html  css  js  c++  java
  • SpringBoot使用Sharding-JDBC分库分表

    本文介绍SpringBoot使用当当Sharding-JDBC进行分库分表。

    1.有关Sharding-JDBC

    有关Sharding-JDBC介绍这里就不在多说,之前Sharding-JDBC是当当网自研的关系型数据库的水平扩展框架,现在已经捐献给Apache,具体可以查看Github,地址是:https://shardingsphere.apache.org/document/current/cn/overview/

    shardingsphere文档地址是:https://shardingsphere.apache.org/document/current/cn/overview/

    目前貌似还不能从Maven仓库下载依赖,需要手动下载源码打包使用,所以本文使用的还是当当网的依赖。

    2.本文场景

    2.1 数据库

    接下来介绍一下本文的场景,本文是分别创建了2个数据库database0和database1。其中每个数据库都创建了2个数据表,goods_0和goods_1,如图所示。这里蓝色的代表database0中的表,红色的代表database1中的表。绿色goods表是虚拟表(图画的比较丑,审美不好,凑合看吧)。

    2.2 分库

    本文分库样例比较简单,根据数据库表中字段goods_id的大小进行判断,如果goods_id大于20则使用database0,否则使用database1。

    2.3 分表

    分样例比较简单,根据数据库表中字段goods_type的数值的奇偶进行判断,奇数使用goods_1表,偶数使用goods_0表。

    2.4 代码流程

    流程大致是这样,在应用程序中我们操作虚拟表goods,但是当真正操作数据库的时候,会根据我们的分库分表规则进行匹配然后操作。

    3.代码实现

    本文使用SpringBoot2.0.3,SpringData-JPA,Druid连接池,和当当的sharding-jdbc。

    3.1 建表SQL

    创建表和数据库的SQL如下所示。

    CREATE DATABASE database0;
    USE database0;
    DROP TABLE IF EXISTS `goods_0`;
    CREATE TABLE `goods_0` (
      `goods_id` bigint(20) NOT NULL,
      `goods_name` varchar(100) COLLATE utf8_bin NOT NULL,
      `goods_type` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`goods_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
    DROP TABLE IF EXISTS `goods_1`;
    CREATE TABLE `goods_1` (
      `goods_id` bigint(20) NOT NULL,
      `goods_name` varchar(100) COLLATE utf8_bin NOT NULL,
      `goods_type` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`goods_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
    CREATE DATABASE database1;
    USE database1;
    DROP TABLE IF EXISTS `goods_0`;
    CREATE TABLE `goods_0` (
      `goods_id` bigint(20) NOT NULL,
      `goods_name` varchar(100) COLLATE utf8_bin NOT NULL,
      `goods_type` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`goods_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
    
    DROP TABLE IF EXISTS `goods_1`;
    CREATE TABLE `goods_1` (
      `goods_id` bigint(20) NOT NULL,
      `goods_name` varchar(100) COLLATE utf8_bin NOT NULL,
      `goods_type` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`goods_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
    

    3.2 依赖文件

    新建项目,加入当当的sharding-jdbc-core依赖和druid连接池,完整pom如下所示。

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <parent>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-parent</artifactId>
            <version>2.0.3.RELEASE</version>
            <relativePath/> <!-- lookup parent from repository -->
        </parent>
        <groupId>com.dalaoyang</groupId>
        <artifactId>springboot2_shardingjdbc_fkfb</artifactId>
        <version>0.0.1-SNAPSHOT</version>
        <name>springboot2_shardingjdbc_fkfb</name>
        <description>springboot2_shardingjdbc_fkfb</description>
    
        <properties>
            <java.version>1.8</java.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-data-jpa</artifactId>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-web</artifactId>
            </dependency>
    
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-devtools</artifactId>
                <scope>runtime</scope>
            </dependency>
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <scope>runtime</scope>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-test</artifactId>
                <scope>test</scope>
            </dependency>
            <!-- lombok -->
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
                <optional>true</optional>
            </dependency>
            <!-- druid -->
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>druid</artifactId>
                <version>1.1.9</version>
            </dependency>
            <!-- sharding-jdbc -->
            <dependency>
                <groupId>com.dangdang</groupId>
                <artifactId>sharding-jdbc-core</artifactId>
                <version>1.5.4</version>
            </dependency>
    
        </dependencies>
    
        <build>
            <plugins>
                <plugin>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-maven-plugin</artifactId>
                </plugin>
            </plugins>
        </build>
    
    </project>
    

    3.3 配置信息

    在配置信息中配置了两个数据库的信息和JPA的简单配置。

    ##Jpa配置
    spring.jpa.database=mysql
    spring.jpa.show-sql=true
    spring.jpa.hibernate.ddl-auto=none
    
    ##数据库配置
    ##数据库database0地址
    database0.url=jdbc:mysql://localhost:3306/database0?characterEncoding=utf8&useSSL=false
    ##数据库database0用户名
    database0.username=root
    ##数据库database0密码
    database0.password=root
    ##数据库database0驱动
    database0.driverClassName=com.mysql.jdbc.Driver
    ##数据库database0名称
    database0.databaseName=database0
    
    ##数据库database1地址
    database1.url=jdbc:mysql://localhost:3306/database1?characterEncoding=utf8&useSSL=false
    ##数据库database1用户名
    database1.username=root
    ##数据库database1密码
    database1.password=root
    ##数据库database1驱动
    database1.driverClassName=com.mysql.jdbc.Driver
    ##数据库database1名称
    database1.databaseName=database1
    
    

    3.4 启动类

    启动类加入了@EnableAutoConfiguration取出数据库自动配置,使用@EnableTransactionManagement开启事务,使用@EnableConfigurationProperties注解加入配置实体,启动类完整代码请入所示。

    package com.dalaoyang;
    
    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
    import org.springframework.boot.autoconfigure.SpringBootApplication;
    import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration;
    import org.springframework.boot.context.properties.EnableConfigurationProperties;
    import org.springframework.context.annotation.ComponentScan;
    import org.springframework.transaction.annotation.EnableTransactionManagement;
    
    @SpringBootApplication
    @EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
    @EnableTransactionManagement(proxyTargetClass = true)
    @EnableConfigurationProperties
    public class Springboot2ShardingjdbcFkfbApplication {
    
        public static void main(String[] args) {
            SpringApplication.run(Springboot2ShardingjdbcFkfbApplication.class, args);
        }
    
    }
    
    

    3.5 实体类和数据库操作层

    这里没什么好说的,就是简单的实体和Repository,只不过在Repository内加入between方法和in方法用于测试,代码如下所示。

    Goods实体类。

    package com.dalaoyang.entity;
    
    import lombok.Data;
    
    import javax.persistence.Entity;
    import javax.persistence.Id;
    import javax.persistence.Table;
    
    /**
     * @author yangyang
     * @date 2019/1/29
     */
    @Entity
    @Table(name="goods")
    @Data
    public class Goods {
        @Id
        private Long goodsId;
    
        private String goodsName;
    
        private Long goodsType;
    }
    
    

    GoodsRepository类。

    package com.dalaoyang.repository;
    
    import com.dalaoyang.entity.Goods;
    import org.springframework.data.jpa.repository.JpaRepository;
    
    import java.util.List;
    
    /**
     * @author yangyang
     * @date 2019/1/29
     */
    public interface GoodsRepository extends JpaRepository<Goods, Long> {
    
        List<Goods> findAllByGoodsIdBetween(Long goodsId1,Long goodsId2);
    
        List<Goods> findAllByGoodsIdIn(List<Long> goodsIds);
    }
    

    3.6 数据库配置

    本文使用了两个实体来接收数据库信息,并且创建数据源,也可以采用别的方式。首先看一下Database0Config和Database1Config两个类的代码。

    Database0Config类。

    package com.dalaoyang.database;
    
    import com.alibaba.druid.pool.DruidDataSource;
    import lombok.Data;
    import org.springframework.boot.context.properties.ConfigurationProperties;
    import org.springframework.stereotype.Component;
    
    import javax.sql.DataSource;
    
    /**
     * @author yangyang
     * @date 2019/1/30
     */
    @Data
    @ConfigurationProperties(prefix = "database0")
    @Component
    public class Database0Config {
        private String url;
        private String username;
        private String password;
        private String driverClassName;
        private String databaseName;
    
        public DataSource createDataSource() {
            DruidDataSource result = new DruidDataSource();
            result.setDriverClassName(getDriverClassName());
            result.setUrl(getUrl());
            result.setUsername(getUsername());
            result.setPassword(getPassword());
            return result;
        }
    }
    
    

    Database1Config类。

    package com.dalaoyang.database;
    
    import com.alibaba.druid.pool.DruidDataSource;
    import lombok.Data;
    import org.springframework.boot.context.properties.ConfigurationProperties;
    import org.springframework.stereotype.Component;
    
    import javax.sql.DataSource;
    
    /**
     * @author yangyang
     * @date 2019/1/30
     */
    @Data
    @ConfigurationProperties(prefix = "database1")
    @Component
    public class Database1Config {
        private String url;
        private String username;
        private String password;
        private String driverClassName;
        private String databaseName;
    
        public DataSource createDataSource() {
            DruidDataSource result = new DruidDataSource();
            result.setDriverClassName(getDriverClassName());
            result.setUrl(getUrl());
            result.setUsername(getUsername());
            result.setPassword(getPassword());
            return result;
        }
    }
    
    

    接下来新建DataSourceConfig用于创建数据源和使用分库分表策略,其中分库分表策略会调用分库算法类和分表算法类,DataSourceConfig类代码如下所示。

    package com.dalaoyang.database;
    
    
    import com.dalaoyang.config.DatabaseShardingAlgorithm;
    import com.dalaoyang.config.TableShardingAlgorithm;
    import com.dangdang.ddframe.rdb.sharding.api.ShardingDataSourceFactory;
    import com.dangdang.ddframe.rdb.sharding.api.rule.DataSourceRule;
    import com.dangdang.ddframe.rdb.sharding.api.rule.ShardingRule;
    import com.dangdang.ddframe.rdb.sharding.api.rule.TableRule;
    import com.dangdang.ddframe.rdb.sharding.api.strategy.database.DatabaseShardingStrategy;
    import com.dangdang.ddframe.rdb.sharding.api.strategy.table.TableShardingStrategy;
    import com.dangdang.ddframe.rdb.sharding.keygen.DefaultKeyGenerator;
    import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;
    
    import javax.sql.DataSource;
    import java.sql.SQLException;
    import java.util.Arrays;
    import java.util.HashMap;
    import java.util.Map;
    
    /**
     * @author yangyang
     * @date 2019/1/29
     */
    @Configuration
    public class DataSourceConfig {
    
        @Autowired
        private Database0Config database0Config;
    
        @Autowired
        private Database1Config database1Config;
    
        @Autowired
        private DatabaseShardingAlgorithm databaseShardingAlgorithm;
    
        @Autowired
        private TableShardingAlgorithm tableShardingAlgorithm;
    
        @Bean
        public DataSource getDataSource() throws SQLException {
            return buildDataSource();
        }
    
        private DataSource buildDataSource() throws SQLException {
            //分库设置
            Map<String, DataSource> dataSourceMap = new HashMap<>(2);
            //添加两个数据库database0和database1
            dataSourceMap.put(database0Config.getDatabaseName(), database0Config.createDataSource());
            dataSourceMap.put(database1Config.getDatabaseName(), database1Config.createDataSource());
            //设置默认数据库
            DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap, database0Config.getDatabaseName());
    
            //分表设置,大致思想就是将查询虚拟表Goods根据一定规则映射到真实表中去
            TableRule orderTableRule = TableRule.builder("goods")
                    .actualTables(Arrays.asList("goods_0", "goods_1"))
                    .dataSourceRule(dataSourceRule)
                    .build();
    
            //分库分表策略
            ShardingRule shardingRule = ShardingRule.builder()
                    .dataSourceRule(dataSourceRule)
                    .tableRules(Arrays.asList(orderTableRule))
                    .databaseShardingStrategy(new DatabaseShardingStrategy("goods_id", databaseShardingAlgorithm))
                    .tableShardingStrategy(new TableShardingStrategy("goods_type", tableShardingAlgorithm)).build();
            DataSource dataSource = ShardingDataSourceFactory.createDataSource(shardingRule);
            return dataSource;
        }
    
    
        @Bean
        public KeyGenerator keyGenerator() {
            return new DefaultKeyGenerator();
        }
    
    }
    
    

    3.7 分库分表算法

    由于这里只是简单的分库分表样例,所以分库类这里实现SingleKeyDatabaseShardingAlgorithm类,采用了单分片键数据源分片算法,需要重写三个方法,分别是:

    • doEqualSharding:SQL中==的规则。
    • doInSharding:SQL中in的规则。
    • doBetweenSharding:SQL中between的规则。

    本文分库规则是基于值大于20则使用database0,其余使用database1,所以简单if,else就搞定了,分库算法类DatabaseShardingAlgorithm代码如下所示。

    package com.dalaoyang.config;
    
    import com.dalaoyang.database.Database0Config;
    import com.dalaoyang.database.Database1Config;
    import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
    import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
    import com.google.common.collect.Range;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.stereotype.Component;
    
    import java.util.Collection;
    import java.util.LinkedHashSet;
    
    /**
     * 这里使用的都是单键分片策略
     * 示例分库策略是:
     * GoodsId<=20使用database0库
     * 其余使用database1库
     * @author yangyang
     * @date 2019/1/30
     */
    @Component
    public class DatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Long> {
    
        @Autowired
        private Database0Config database0Config;
    
        @Autowired
        private Database1Config database1Config;
    
        @Override
        public String doEqualSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) {
            Long value = shardingValue.getValue();
            if (value <= 20L) {
                return database0Config.getDatabaseName();
            } else {
                return database1Config.getDatabaseName();
            }
        }
    
        @Override
        public Collection<String> doInSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) {
            Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());
            for (Long value : shardingValue.getValues()) {
                if (value <= 20L) {
                    result.add(database0Config.getDatabaseName());
                } else {
                    result.add(database1Config.getDatabaseName());
                }
            }
            return result;
        }
    
        @Override
        public Collection<String> doBetweenSharding(Collection<String> availableTargetNames,
                                                    ShardingValue<Long> shardingValue) {
            Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());
            Range<Long> range = shardingValue.getValueRange();
            for (Long value = range.lowerEndpoint(); value <= range.upperEndpoint(); value++) {
                if (value <= 20L) {
                    result.add(database0Config.getDatabaseName());
                } else {
                    result.add(database1Config.getDatabaseName());
                }
            }
            return result;
        }
    }
    

    分表和分库类似,无非就是实现的类不一样,实现了SingleKeyTableShardingAlgorithm类,策略使用值奇偶分表,分表算法类TableShardingAlgorithm如代码清单所示。

    package com.dalaoyang.config;
    
    import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
    import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
    import com.google.common.collect.Range;
    import org.springframework.stereotype.Component;
    
    import java.util.Collection;
    import java.util.LinkedHashSet;
    
    /**
     * 这里使用的都是单键分片策略
     * 示例分表策略是:
     * GoodsType为奇数使用goods_1表
     * GoodsType为偶数使用goods_0表
     * @author yangyang
     * @date 2019/1/30
     */
    @Component
    public class TableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> {
    
        @Override
        public String doEqualSharding(final Collection<String> tableNames, final ShardingValue<Long> shardingValue) {
            for (String each : tableNames) {
                if (each.endsWith(shardingValue.getValue() % 2 + "")) {
                    return each;
                }
            }
            throw new IllegalArgumentException();
        }
    
        @Override
        public Collection<String> doInSharding(final Collection<String> tableNames, final ShardingValue<Long> shardingValue) {
            Collection<String> result = new LinkedHashSet<>(tableNames.size());
            for (Long value : shardingValue.getValues()) {
                for (String tableName : tableNames) {
                    if (tableName.endsWith(value % 2 + "")) {
                        result.add(tableName);
                    }
                }
            }
            return result;
        }
    
        @Override
        public Collection<String> doBetweenSharding(final Collection<String> tableNames,
                                                    final ShardingValue<Long> shardingValue) {
            Collection<String> result = new LinkedHashSet<>(tableNames.size());
            Range<Long> range = shardingValue.getValueRange();
            for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
                for (String each : tableNames) {
                    if (each.endsWith(i % 2 + "")) {
                        result.add(each);
                    }
                }
            }
            return result;
        }
    }
    

    3.8 Controller

    接下来创建一个Controller进行测试,保存方法使用了插入40条数据,根据我们的规则,会每个库插入20条,同时我这里还创建了三个查询方法,分别是查询全部,between查询,in查询,还有删除全部方法。Controller类代码如下所示。

    package com.dalaoyang.controller;
    
    import com.dalaoyang.entity.Goods;
    import com.dalaoyang.repository.GoodsRepository;
    import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.web.bind.annotation.GetMapping;
    import org.springframework.web.bind.annotation.RestController;
    
    import java.util.ArrayList;
    import java.util.List;
    
    /**
     * @author yangyang
     * @date 2019/1/29
     */
    @RestController
    public class GoodsController {
    
        @Autowired
        private KeyGenerator keyGenerator;
    
        @Autowired
        private GoodsRepository goodsRepository;
    
        @GetMapping("save")
        public String save(){
            for(int i= 1 ; i <= 40 ; i ++){
                Goods goods = new Goods();
                goods.setGoodsId((long) i);
                goods.setGoodsName( "shangpin" + i);
                goods.setGoodsType((long) (i+1));
                goodsRepository.save(goods);
            }
            return "success";
        }
    
        @GetMapping("select")
        public String select(){
            return goodsRepository.findAll().toString();
        }
    
        @GetMapping("delete")
        public void delete(){
             goodsRepository.deleteAll();
        }
    
        @GetMapping("query1")
        public Object query1(){
            return goodsRepository.findAllByGoodsIdBetween(10L, 30L);
        }
    
        @GetMapping("query2")
        public Object query2(){
            List<Long> goodsIds = new ArrayList<>();
            goodsIds.add(10L);
            goodsIds.add(15L);
            goodsIds.add(20L);
            goodsIds.add(25L);
            return goodsRepository.findAllByGoodsIdIn(goodsIds);
        }
    }
    
    

    4.测试

    启动应用,在浏览器或HTTP请求工具访问http://localhost:8080/save,如图所示,返回success。

    接下来在测试一下查询方法,访问http://localhost:8080/select,如图所示,可以看到插入数据没问题。

    然后查看一下数据库,首先看database0,如图,每个表都有十条数据,如下所示。

    接下来看database1,如下所示。

    从上面几张图可以看出分库分表已经按照我们的策略来进行插入,至于其他几个测试这里就不做介绍了,无论是查询和删除都是可以成功的。

    5 源码

    源码地址:https://gitee.com/dalaoyang/springboot_learn/tree/master/springboot2_shardingjdbc_fkfb

  • 相关阅读:
    top 500 name
    dede 5.7 爆后台
    Mac中GDB安装
    php strcmp bypass漏洞
    文件时间伪造
    C#读取计算机插入USB历史记录
    MySQL远程连接时出现10061以及1045错误时的解决方法
    MDN 开发者分享平台
    thinkphp 3.2 完全开发手册地址
    PHP 解析JSON数组
  • 原文地址:https://www.cnblogs.com/dalaoyang/p/10345388.html
Copyright © 2011-2022 走看看