zoukankan      html  css  js  c++  java
  • Python数据可视化库seaborn ------ 多变量的分布绘图:stripplot()、swarmplot();箱线图与小提琴图;条形图;点图;多层面板分类图:catplot函数、FacetGrid 类、PairGrid类;热力图

    seaborn官方文档:http://seaborn.pydata.org/api.html

    绘制多变量的分布图

      先绘制两个变量的分布图,其中X变量为分类变量,Y为数值变量。

    1 import pandas as pd
    2 import numpy as np
    3 import seaborn as sns
    4 import matplotlib.pyplot as plt
    5 import matplotlib as mpl
    6 tips = sns.load_dataset("tips")
    7 sns.set(style="whitegrid", color_codes=True)
    8 sns.stripplot(x="day", y="total_bill", data=tips)
    9 plt.show()

      运行结果:

      

      注意:观察上图不难发现,带图默认是有抖动的,即 jitter=True下面用 swarmplot 绘制带分布的散点图。并且将展示在图中分割多个分类变量,以不同的颜色展示。

    1 plt.subplot(121)
    2 sns.swarmplot(x="day", y="total_bill", data=tips)
    3 plt.subplot(122)
    4 sns.swarmplot(x="day", y="total_bill", hue="sex", data=tips)
    5 plt.show()
    6 sns.swarmplot(x="total_bill", y="day", hue="time", data=tips)
    7 plt.show()

      运行结果:

      

      

      通过上面的图像我们很容易观察到 day 与 time 、sex 之间的一些关系。

     箱线图与小提琴图

       下面我们将绘制箱线图以及小提琴图展示 变量间的关系

     盒图

      IQR即统计学概念四分位距,第一/四分位 与 第三/四分位之间的距离

      N = 1.5IQR 如果一个值>Q3+N或 < Q1-N,则为离群点

    1 sns.boxplot(x="day", y="total_bill", hue="time", data=tips)
    2 plt.show()

      运行结果:

      

      小提琴图可以做类似的效果,且能够展示其分布

    1 sns.violinplot(x="total_bill", y="day", hue="time", data=tips)
    2 plt.show()

      运行结果:

      

      中间的黑色粗线为4分位距,细线为 95% 置信区间。我们也可以将小提琴图设置为一边显示一个类别,这样对比性就更加明确。

    1 sns.violinplot(x="day", y="total_bill", hue="sex", data=tips)
    2 plt.show()
    3 sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True)
    4 plt.show()

      运行结果:

      

      

      明显可以发现上面第二张图区分更明显。两种函数结合可以生成更加炫酷的图:

    1 sns.violinplot(x="day", y="total_bill", data=tips, inner=None)  # inner 小提琴内部图形
    2 sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)  # alpha 透明度
    3 plt.show()
    4 sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
    5 sns.swarmplot(x="day", y="total_bill", data=tips, color="w",)
    6 plt.show()

      当然我们也可以横着展示箱线图:

    1 sns.boxplot(data=iris, orient="h")  # orient  垂直和水平
    2 plt.show()

      

    条形图

      显示图的集中趋势

    1 titanic = sns.load_dataset("titanic")
    2 print(titanic.describe())
    3 print(titanic.info())
    4 sns.barplot(x="sex", y="survived", hue="class", data=titanic)
    5 plt.show()

      

      

      

    点图可以更好的描述变化差异

       对class属性分类绘制:

    1 sns.pointplot(x="sex", y="survived", hue="class", data=titanic)
    2 plt.show()

      

      改变线形和点的形状

    1 sns.pointplot(x="class", y="survived", hue="sex", data=titanic,
    2               palette={"male": "g", "female": "m"},
    3               markers=["^", "o"], linestyles=["-", "--"])
    4 plt.show()

      

     多层面板分类图

      下面展示的是 catplot 函数,及其参数说明:

    # catplot(x=None, y=None, hue=None, data=None, row=None, col=None,
    #             col_wrap=None, estimator=np.mean, ci=95, n_boot=1000,
    #             units=None, order=None, hue_order=None, row_order=None,
    #             col_order=None, kind="strip", height=5, aspect=1,
    #             orient=None, color=None, palette=None,
    #             legend=True, legend_out=True, sharex=True, sharey=True,
    #             margin_titles=False, facet_kws=None, **kwargs)
    Parameters:

    x, y, hue : names of variables in data

    Inputs for plotting long-form data. See examples for interpretation.

    data : DataFrame

    Long-form (tidy) dataset for plotting. Each column should correspond to a variable, and each row should correspond to an observation.

    row, col : names of variables in data, optional

    Categorical variables that will determine the faceting of the grid.

    col_wrap : int, optional

    “Wrap” the column variable at this width, so that the column facets span multiple rows. Incompatible with a row facet.

    estimator : callable that maps vector -> scalar, optional

    Statistical function to estimate within each categorical bin.

    ci : float or “sd” or None, optional

    Size of confidence intervals to draw around estimated values. If “sd”, skip bootstrapping and draw the standard deviation of the observations. If None, no bootstrapping will be performed, and error bars will not be drawn.

    n_boot : int, optional

    Number of bootstrap iterations to use when computing confidence intervals.

    units : name of variable in data or vector data, optional

    Identifier of sampling units, which will be used to perform a multilevel bootstrap and account for repeated measures design.

    order, hue_order : lists of strings, optional

    Order to plot the categorical levels in, otherwise the levels are inferred from the data objects.

    row_order, col_order : lists of strings, optional

    Order to organize the rows and/or columns of the grid in, otherwise the orders are inferred from the data objects.

    kind : string, optional

    The kind of plot to draw (corresponds to the name of a categorical plotting function. Options are: “point”, “bar”, “strip”, “swarm”, “box”, “violin”, or “boxen”.

    height : scalar, optional

    Height (in inches) of each facet. See also: aspect.

    aspect : scalar, optional

    Aspect ratio of each facet, so that aspect height gives the width of each facet in inches.

    orient : “v” | “h”, optional

    Orientation of the plot (vertical or horizontal). This is usually inferred from the dtype of the input variables, but can be used to specify when the “categorical” variable is a numeric or when plotting wide-form data.

    color : matplotlib color, optional

    Color for all of the elements, or seed for a gradient palette.

    palette : palette name, list, or dict, optional

    Colors to use for the different levels of the hue variable. Should be something that can be interpreted by color_palette(), or a dictionary mapping hue levels to matplotlib colors.

    legend : bool, optional

    If True and there is a hue variable, draw a legend on the plot.

    legend_out : bool, optional

    If True, the figure size will be extended, and the legend will be drawn outside the plot on the center right.

    share{x,y} : bool, ‘col’, or ‘row’ optional

    If true, the facets will share y axes across columns and/or x axes across rows.

    margin_titles : bool, optional

    If True, the titles for the row variable are drawn to the right of the last column. This option is experimental and may not work in all cases.

    facet_kws : dict, optional

    Dictionary of other keyword arguments to pass to FacetGrid.

    kwargs : key, value pairings

    Other keyword arguments are passed through to the underlying plotting function.

    Returns:

    g : FacetGrid

    Returns the FacetGrid object with the plot on it for further tweaking.

      Parameters:

      x,y,hue 数据集变量 变量名

      date 数据集 数据集名

      row,col 更多分类变量进行平铺显示 变量名

      col_wrap 每行的最高平铺数 整数

      estimator 在每个分类中进行矢量到标量的映射 矢量

      ci 置信区间 浮点数或None

      n_boot 计算置信区间时使用的引导迭代次数 整数

      units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据

      order, hue_order 对应排序列表 字符串列表

      row_order, col_order 对应排序列表 字符串列表

      kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点

      size 每个面的高度(英寸) 标量  已经不用了,现在使用height

      aspect 纵横比 标量

      orient 方向 "v"/"h"

      color 颜色 matplotlib颜色

      palette 调色板名称 seaborn颜色色板

      legend_hue  布尔值:如果是真的,图形大小将被扩展,并且图画将绘制在中心右侧的图外。

      share{x,y} 共享轴线 True/False:如果为真,则刻面将通过列和/或X轴在行之间共享Y轴。

       下面将是常用图像的展示:

    1 sns.catplot(x="day", y="total_bill", hue="smoker", data=tips)
    2 plt.show()

      

    1 sns.catplot(x="day", y="total_bill", hue="smoker", data=tips, kind="bar")
    2 plt.show()

       

    1 sns.catplot(x="day", y="total_bill", hue="smoker",
    2             col="time", data=tips, kind="swarm")
    3 plt.show()

       

    1 sns.catplot(x="time", y="total_bill", hue="smoker",
    2             col="day", data=tips, kind="box", height=4, aspect=.5)
    3 plt.show()

       

      FacetGrid 这个类来展示数据

      更多内容请点击上面的链接,下面将简单展示

    1 g = sns.FacetGrid(tips, col="time")                    # 占位
    2 g.map(plt.hist, "tip")                                 # 画图;第一个参数是func
    3 plt.show()

      

    1 g = sns.FacetGrid(tips, col="sex", hue="smoker")
    2 g.map(plt.scatter, "total_bill", "tip", alpha=.7)
    3 g.add_legend()
    4 plt.show()

      

    1 sns.set_style("ticks")
    2 g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True)  # 变量标题右侧,实验性并不总是有效
    3 g.map(sns.regplot, "size", "total_bill", color=".1", fit_reg=False, x_jitter=.1)  # color 颜色深浅  fit_reg  回归的线  x_jitter 浮动
    4 plt.show()

      

    1 g = sns.FacetGrid(tips, col="day", height=4, aspect=.5)
    2 g.map(sns.barplot, "sex", "total_bill", order=["Male", "Female"])
    3 plt.show()

      

    1 from pandas import Categorical
    2 ordered_days = tips.day.value_counts().index
    3 print(ordered_days)
    4 ordered_days = Categorical(['Thur', 'Fri', 'Sat', 'Sun'])
    5 g = sns.FacetGrid(tips, row="day", row_order=ordered_days,
    6                   height=1.7, aspect=4)
    7 g.map(sns.boxplot, "total_bill", order=["Male","Female"])
    8 plt.show()

      

      

    1 pal = dict(Lunch="seagreen", Dinner="gray")
    2 g = sns.FacetGrid(tips, hue="time", palette=pal, height=5)
    3 g.map(plt.scatter, "total_bill", "tip", s=50, alpha=.7, linewidth=.5, edgecolors="red") # edgecolors 元素边界颜色
    4 g.add_legend()
    5 plt.show()

      

    1 g = sns.FacetGrid(tips, hue="sex", palette="Set1", height=5, hue_kws={"marker": ["^", "v"]})
    2 g.map(plt.scatter, "total_bill", "tip", s=100, linewidth=.5, edgecolor="white")
    3 g.add_legend()
    4 plt.show()

      

    1 with sns.axes_style("white"):
    2     g = sns.FacetGrid(tips, row="sex", col="smoker", margin_titles=True, height=2.5)
    3 g.map(plt.scatter, "total_bill", "tip", color="#334488", edgecolor="white", lw=.5)
    4 g.set_axis_labels("Total bill (US Dollars)", "Tip")
    5 g.set(xticks=[10, 30, 50], yticks=[2, 6, 10])
    6 g.fig.subplots_adjust(wspace=.02, hspace=.02)  # 子图与子图
    7 # g.fig.subplots_adjust(left  = 0.125,right = 0.5,bottom = 0.1,top = 0.9, wspace=.02, hspace=.02)
    8 plt.show()

      

      

    PairGrid 的简单展示
    1 iris = sns.load_dataset("iris")
    2 g = sns.PairGrid(iris)
    3 g.map(plt.scatter)
    4 plt.show()

      

    1 g = sns.PairGrid(iris)
    2 g.map_diag(plt.hist)        # 对角线
    3 g.map_offdiag(plt.scatter)  # 非对角线
    4 plt.show()

      

    1 g = sns.PairGrid(iris, hue="species")
    2 g.map_diag(plt.hist)
    3 g.map_offdiag(plt.scatter)
    4 g.add_legend()
    5 plt.show()

      

    1 g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species")  # vars 取一部分
    2 g.map(plt.scatter)
    3 plt.show()

      

    1 g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
    2 g.map(plt.scatter, s=50, edgecolor="white")
    3 g.add_legend()
    4 plt.show()

      

    热力图

       用颜色的深浅、亮度等来显示数据的分布

    1 uniform_data = np.random.rand(3, 3)
    2 print(uniform_data)
    3 heatmap = sns.heatmap(uniform_data)
    4 plt.show()

      

      

    1 ax = sns.heatmap(uniform_data, vmin=0.2, vmax=0.5)  # 最大最小取值
    2 plt.show()

      

      注意上图的随机数发生了变化。

    1 normal_data = np.random.randn(3, 3)
    2 print(normal_data)
    3 ax = sns.heatmap(normal_data, center=0)      # 中心值
    4 plt.show()

      

      

    1 flights = sns.load_dataset("flights")
    2 print(flights.head())
    3 flights = flights.pivot("month", "year", "passengers")  # 根据列值重塑数据
    4 print(flights)
    5 sns.heatmap(flights)
    6 plt.show()

      

      

    1 # fmt参数在这里是必须的,不然会乱码
    2 sns.heatmap(flights, annot=True, fmt="d")
    3 plt.show()

      

    1 sns.heatmap(flights, linewidths=.4)
    2 plt.show()

      

    1 sns.heatmap(flights, cmap="YlGnBu")  # 指定数据值到颜色空间的映射;如果不提供,默认将取决于是否设置了中心
    2 plt.show()

      

    1 sns.heatmap(flights, cbar=False)  # 隐藏bar
    2 plt.show()

      

    清澈的爱,只为中国
  • 相关阅读:
    大话GridView—(1) 编辑、删除、查看详情、分页
    『协议』XMLRPC 协议规格说明
    『ExtJS』01 009. ExtJS 4 方法重载
    [SQL2005触发器学习]3、Instead Of触发器
    [SQL2005触发器学习]1、初识触发器
    禁止.NET程序多开
    面试遇到的面试题分析
    关于Page,Master,UserControl的初始化及加载顺序
    ASP.NET 下关于ACCESS连接字符串的配置
    [SQL2005触发器学习]2、After触发器
  • 原文地址:https://www.cnblogs.com/dan-baishucaizi/p/9474387.html
Copyright © 2011-2022 走看看