zoukankan      html  css  js  c++  java
  • oracle 函数3

    93。STDDEV
    功能描述:计算当前行关于组的标准偏离。(Standard Deviation)
    SAMPLE:下例返回部门30按雇佣日期排序的薪水值的累积标准偏离

    SELECT last_name, hire_date,salary,
    STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
    FROM employees
    WHERE department_id = 30;

    LAST_NAME HIRE_DATE SALARY StdDev
    ------------------------- ---------- ---------- ----------
    Raphaely 07-12月-94 11000 0
    Khoo 18-5月 -95 3100 5586.14357
    Tobias 24-7月 -97 2800 4650.0896
    Baida 24-12月-97 2900 4035.26125
    Himuro 15-11月-98 2600 3649.2465
    Colmenares 10-8月 -99 2500 3362.58829

    94。STDDEV_POP
    功能描述:该函数计算总体标准偏离,并返回总体变量的平方根,其返回值与VAR_POP函数的平方根相同。(Standard Deviation-Population)
    SAMPLE:下例返回部门20、30、60的薪水值的总体标准偏差

    SELECT department_id, last_name, salary,
    STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
    FROM employees
    WHERE department_id in (20,30,60);

    DEPARTMENT_ID LAST_NAME SALARY POP_STD
    ------------- ------------------------- ---------- ----------
    20 Hartstein 13000 3500
    20 Fay 6000 3500
    30 Raphaely 11000 3069.6091
    30 Khoo 3100 3069.6091
    30 Baida 2900 3069.6091
    30 Colmenares 2500 3069.6091
    30 Himuro 2600 3069.6091
    30 Tobias 2800 3069.6091
    60 Hunold 9000 1722.32401
    60 Ernst 6000 1722.32401
    60 Austin 4800 1722.32401
    60 Pataballa 4800 1722.32401
    60 Lorentz 4200 1722.32401

    95。STDDEV_SAMP
    功能描述: 该函数计算累积样本标准偏离,并返回总体变量的平方根,其返回值与VAR_POP函数的平方根相同。(Standard Deviation-Sample)
    SAMPLE:下例返回部门20、30、60的薪水值的样本标准偏差

    SELECT department_id, last_name, hire_date, salary,
    STDDEV_SAMP(salary) OVER
    (PARTITION BY department_id ORDER BY hire_date
    ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
    FROM employees
    WHERE department_id in (20,30,60);

    DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV
    ------------- ------------------------- ---------- ---------- ----------
    20 Hartstein 17-2月 -96 13000
    20 Fay 17-8月 -97 6000 4949.74747
    30 Raphaely 07-12月-94 11000
    30 Khoo 18-5月 -95 3100 5586.14357
    30 Tobias 24-7月 -97 2800 4650.0896
    30 Baida 24-12月-97 2900 4035.26125
    30 Himuro 15-11月-98 2600 3649.2465
    30 Colmenares 10-8月 -99 2500 3362.58829
    60 Hunold 03-1月 -90 9000
    60 Ernst 21-5月 -91 6000 2121.32034
    60 Austin 25-6月 -97 4800 2163.33077
    60 Pataballa 05-2月 -98 4800 1982.42276
    60 Lorentz 07-2月 -99 4200 1925.61678


    96。SUM
    功能描述:该函数计算组中表达式的累积和。
    SAMPLE:下例计算同一经理下员工的薪水累积值

    SELECT manager_id, last_name, salary,
    SUM (salary) OVER (PARTITION BY manager_id ORDER BY salary
    RANGE UNBOUNDED PRECEDING) l_csum
    FROM employees
    WHERE manager_id in (101,103,108);

    MANAGER_ID LAST_NAME SALARY L_CSUM
    ---------- ------------------------- ---------- ----------
    101 Whalen 4400 4400
    101 Mavris 6500 10900
    101 Baer 10000 20900
    101 Greenberg 12000 44900
    101 Higgins 12000 44900
    103 Lorentz 4200 4200
    103 Austin 4800 13800
    103 Pataballa 4800 13800
    103 Ernst 6000 19800
    108 Popp 6900 6900
    108 Sciarra 7700 14600
    108 Urman 7800 22400
    108 Chen 8200 30600
    108 Faviet 9000 39600

    97。VAR_POP
    功能描述:(Variance Population)该函数返回非空集合的总体变量(忽略null),VAR_POP进行如下计算:
    (SUM(expr2) - SUM(expr)2 / COUNT(expr)) / COUNT(expr)
    SAMPLE:下例计算1998年每月销售的累积总体和样本变量(本例在SH用户下运行)

    SELECT t.calendar_month_desc,
    VAR_POP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
    VAR_SAMP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
    FROM sales s, times t
    WHERE s.time_id = t.time_id AND t.calendar_year = 1998
    GROUP BY t.calendar_month_desc;

    CALENDAR Var_Pop Var_Samp
    -------- ---------- ----------
    1998-01 0
    1998-02 6.1321E+11 1.2264E+12
    1998-03 4.7058E+11 7.0587E+11
    1998-04 4.6929E+11 6.2572E+11
    1998-05 1.5524E+12 1.9405E+12
    1998-06 2.3711E+12 2.8453E+12
    1998-07 3.7464E+12 4.3708E+12
    1998-08 3.7852E+12 4.3260E+12
    1998-09 3.5753E+12 4.0222E+12
    1998-10 3.4343E+12 3.8159E+12
    1998-11 3.4245E+12 3.7669E+12
    1998-12 4.8937E+12 5.3386E+12

    98。VAR_SAMP
    功能描述:(Variance Sample)该函数返回非空集合的样本变量(忽略null),VAR_POP进行如下计算:
    (SUM(expr*expr)-SUM(expr)*SUM(expr)/COUNT(expr))/(COUNT(expr)-1)
    SAMPLE:下例计算1998年每月销售的累积总体和样本变量

    SELECT t.calendar_month_desc,
    VAR_POP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
    VAR_SAMP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
    FROM sales s, times t
    WHERE s.time_id = t.time_id AND t.calendar_year = 1998
    GROUP BY t.calendar_month_desc;

    CALENDAR Var_Pop Var_Samp
    -------- ---------- ----------
    1998-01 0
    1998-02 6.1321E+11 1.2264E+12
    1998-03 4.7058E+11 7.0587E+11
    1998-04 4.6929E+11 6.2572E+11
    1998-05 1.5524E+12 1.9405E+12
    1998-06 2.3711E+12 2.8453E+12
    1998-07 3.7464E+12 4.3708E+12
    1998-08 3.7852E+12 4.3260E+12
    1998-09 3.5753E+12 4.0222E+12
    1998-10 3.4343E+12 3.8159E+12
    1998-11 3.4245E+12 3.7669E+12
    1998-12 4.8937E+12 5.3386E+12

    99。VARIANCE
    功能描述:该函数返回表达式的变量,Oracle计算该变量如下:
    如果表达式中行数为1,则返回0
    如果表达式中行数大于1,则返回VAR_SAMP
    SAMPLE:下例返回部门30按雇佣日期排序的薪水值的累积变化

    SELECT last_name, salary, VARIANCE(salary)
    OVER (ORDER BY hire_date) "Variance"
    FROM employees
    WHERE department_id = 30;

    LAST_NAME SALARY Variance
    ------------------------- ---------- ----------
    Raphaely 11000 0
    Khoo 3100 31205000
    Tobias 2800 21623333.3
    Baida 2900 16283333.3
    Himuro 2600 13317000
    Colmenares 2500 11307000

    100。RANK
    功能描述:根据ORDER BY子句中表达式的值,从查询返回的每一行,计算它们与其它行的相对位置。组内的数据按ORDER BY子句排序,
    然后给每一行赋一个号,从而形成一个序列,该序列从1开始,往后累加。每次ORDER BY表达式的值发生变化时,该序列也随之增加。
    有同样值的行得到同样的数字序号(认为null时相等的)。然而,如果两行的确得到同样的排序,则序数将随后跳跃。若两行序数为1,
    则没有序数2,序列将给组中的下一行分配值3,DENSE_RANK则没有任何跳跃。
    SAMPLE:下例中计算每个员工按部门分区再按薪水排序,依次出现的序列号(注意与DENSE_RANK函数的区别)

    SELECT d.department_id , e.last_name, e.salary, RANK()
    OVER (PARTITION BY e.department_id ORDER BY e.salary) as drank
    FROM employees e, departments d
    WHERE e.department_id = d.department_id
    AND d.department_id IN ('60', '90');

    DEPARTMENT_ID LAST_NAME SALARY DRANK
    ------------- ------------------------- ---------- ----------
    60 Lorentz 4200 1
    60 Austin 4800 2
    60 Pataballa 4800 2
    60 Ernst 6000 4
    60 Hunold 9000 5
    90 Kochhar 17000 1
    90 De Haan 17000 1
    90 King 24000 3


    101。RATIO_TO_REPORT
    功能描述:该函数计算expression/(sum(expression))的值,它给出相对于总数的百分比,即当前行对sum(expression)的贡献。
    SAMPLE:下例计算每个员工的工资占该类员工总工资的百分比

    SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
    FROM employees
    WHERE job_id = 'PU_CLERK';

    LAST_NAME SALARY RR
    ------------------------- ---------- ----------
    Khoo 3100 .223021583
    Baida 2900 .208633094
    Tobias 2800 .201438849
    Himuro 2600 .18705036
    Colmenares 2500 .179856115

    102。REGR_ (Linear Regression) Functions
    功能描述:这些线性回归函数适合最小二乘法回归线,有9个不同的回归函数可使用。
    REGR_SLOPE:返回斜率,等于COVAR_POP(expr1, expr2) / VAR_POP(expr2)
    REGR_INTERCEPT:返回回归线的y截距,等于
    AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)
    REGR_COUNT:返回用于填充回归线的非空数字对的数目
    REGR_R2:返回回归线的决定系数,计算式为:
    If VAR_POP(expr2) = 0 then return NULL
    If VAR_POP(expr1) = 0 and VAR_POP(expr2) != 0 then return 1
    If VAR_POP(expr1) > 0 and VAR_POP(expr2 != 0 then
    return POWER(CORR(expr1,expr),2)
    REGR_AVGX:计算回归线的自变量(expr2)的平均值,去掉了空对(expr1, expr2)后,等于AVG(expr2)
    REGR_AVGY:计算回归线的应变量(expr1)的平均值,去掉了空对(expr1, expr2)后,等于AVG(expr1)
    REGR_SXX: 返回值等于REGR_COUNT(expr1, expr2) * VAR_POP(expr2)
    REGR_SYY: 返回值等于REGR_COUNT(expr1, expr2) * VAR_POP(expr1)
    REGR_SXY: 返回值等于REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)

    (下面的例子都是在SH用户下完成的)
    SAMPLE 1:下例计算1998年最后三个星期中两种产品(260和270)在周末的销售量中已开发票数量和总数量的累积斜率和回归线的截距

    SELECT t.fiscal_month_number "Month", t.day_number_in_month "Day",
    REGR_SLOPE(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_SLOPE,
    REGR_INTERCEPT(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_ICPT
    FROM sales s, times t
    WHERE s.time_id = t.time_id
    AND s.prod_id IN (270, 260)
    AND t.fiscal_year=1998
    AND t.fiscal_week_number IN (50, 51, 52)
    AND t.day_number_in_week IN (6,7)
    ORDER BY t.fiscal_month_desc, t.day_number_in_month;

    Month Day CUM_SLOPE CUM_ICPT
    ---------- ---------- ---------- ----------
    12 12 -68 1872
    12 12 -68 1872
    12 13 -20.244898 1254.36735
    12 13 -20.244898 1254.36735
    12 19 -18.826087 1287
    12 20 62.4561404 125.28655
    12 20 62.4561404 125.28655
    12 20 62.4561404 125.28655
    12 20 62.4561404 125.28655
    12 26 67.2658228 58.9712313
    12 26 67.2658228 58.9712313
    12 27 37.5245541 284.958221
    12 27 37.5245541 284.958221
    12 27 37.5245541 284.958221

    SAMPLE 2:下例计算1998年4月每天的累积交易数量

    SELECT UNIQUE t.day_number_in_month,
    REGR_COUNT(s.amount_sold, s.quantity_sold)
    OVER (PARTITION BY t.fiscal_month_number ORDER BY t.day_number_in_month)
    "Regr_Count"
    FROM sales s, times t
    WHERE s.time_id = t.time_id
    AND t.fiscal_year = 1998 AND t.fiscal_month_number = 4;

    DAY_NUMBER_IN_MONTH Regr_Count
    ------------------- ----------
    1 825
    2 1650
    3 2475
    4 3300
    .
    26 21450
    30 22200

    SAMPLE 3:下例计算1998年每月销售量中已开发票数量和总数量的累积回归线决定系数

    SELECT t.fiscal_month_number,
    REGR_R2(SUM(s.amount_sold), SUM(s.quantity_sold))
    OVER (ORDER BY t.fiscal_month_number) "Regr_R2"
    FROM sales s, times t
    WHERE s.time_id = t.time_id
    AND t.fiscal_year = 1998
    GROUP BY t.fiscal_month_number
    ORDER BY t.fiscal_month_number;

    FISCAL_MONTH_NUMBER Regr_R2
    ------------------- ----------
    1
    2 1
    3 .927372984
    4 .807019972
    5 .932745567
    6 .94682861
    7 .965342011
    8 .955768075
    9 .959542618
    10 .938618575
    11 .880931415
    12 .882769189

    SAMPLE 4:下例计算1998年12月最后两周产品260的销售量中已开发票数量和总数量的累积平均值

    SELECT t.day_number_in_month,
    REGR_AVGY(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
    "Regr_AvgY",
    REGR_AVGX(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
    "Regr_AvgX"
    FROM sales s, times t
    WHERE s.time_id = t.time_id
    AND s.prod_id = 260
    AND t.fiscal_month_desc = '1998-12'
    AND t.fiscal_week_number IN (51, 52)
    ORDER BY t.day_number_in_month;

    DAY_NUMBER_IN_MONTH Regr_AvgY Regr_AvgX
    ------------------- ---------- ----------
    14 882 24.5
    14 882 24.5
    15 801 22.25
    15 801 22.25
    16 777.6 21.6
    18 642.857143 17.8571429
    18 642.857143 17.8571429
    20 589.5 16.375
    21 544 15.1111111
    22 592.363636 16.4545455
    22 592.363636 16.4545455
    24 553.846154 15.3846154
    24 553.846154 15.3846154
    26 522 14.5
    27 578.4 16.0666667

    SAMPLE 5:下例计算产品260和270在1998年2月周末销售量中已开发票数量和总数量的累积REGR_SXY, REGR_SXX, and REGR_SYY统计值

    SELECT t.day_number_in_month,
    REGR_SXY(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxy",
    REGR_SYY(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_syy",
    REGR_SXX(s.amount_sold, s.quantity_sold)
    OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxx"
    FROM sales s, times t
    WHERE s.time_id = t.time_id
    AND prod_id IN (270, 260)
    AND t.fiscal_month_desc = '1998-02'
    AND t.day_number_in_week IN (6,7)
    ORDER BY t.day_number_in_month;

    DAY_NUMBER_IN_MONTH Regr_sxy Regr_syy Regr_sxx
    ------------------- ---------- ---------- ----------
    1 18870.4 2116198.4 258.4
    1 18870.4 2116198.4 258.4
    1 18870.4 2116198.4 258.4
    1 18870.4 2116198.4 258.4
    7 18870.4 2116198.4 258.4
    8 18870.4 2116198.4 258.4
    14 18870.4 2116198.4 258.4
    15 18870.4 2116198.4 258.4
    21 18870.4 2116198.4 258.4
    22 18870.4 2116198.4 258.4

    103。ROW_NUMBER
    功能描述:返回有序组中一行的偏移量,从而可用于按特定标准排序的行号。
    SAMPLE:下例返回每个员工再在每个部门中按员工号排序后的顺序号

    SELECT department_id, last_name, employee_id, ROW_NUMBER()
    OVER (PARTITION BY department_id ORDER BY employee_id) AS emp_id
    FROM employees
    WHERE department_id < 50;

    DEPARTMENT_ID LAST_NAME EMPLOYEE_ID EMP_ID
    ------------- ------------------------- ----------- ----------
    10 Whalen 200 1
    20 Hartstein 201 1
    20 Fay 202 2
    30 Raphaely 114 1
    30 Khoo 115 2
    30 Baida 116 3
    30 Tobias 117 4
    30 Himuro 118 5
    30 Colmenares 119 6
    40 Mavris 203 1

    104。STDDEV
    功能描述:计算当前行关于组的标准偏离。(Standard Deviation)
    SAMPLE:下例返回部门30按雇佣日期排序的薪水值的累积标准偏离

    SELECT last_name, hire_date,salary,
    STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
    FROM employees
    WHERE department_id = 30;

    LAST_NAME HIRE_DATE SALARY StdDev
    ------------------------- ---------- ---------- ----------
    Raphaely 07-12月-94 11000 0
    Khoo 18-5月 -95 3100 5586.14357
    Tobias 24-7月 -97 2800 4650.0896
    Baida 24-12月-97 2900 4035.26125
    Himuro 15-11月-98 2600 3649.2465
    Colmenares 10-8月 -99 2500 3362.58829

    105。STDDEV_POP
    功能描述:该函数计算总体标准偏离,并返回总体变量的平方根,其返回值与VAR_POP函数的平方根相同。(Standard Deviation-Population)
    SAMPLE:下例返回部门20、30、60的薪水值的总体标准偏差

    SELECT department_id, last_name, salary,
    STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
    FROM employees
    WHERE department_id in (20,30,60);

    DEPARTMENT_ID LAST_NAME SALARY POP_STD
    ------------- ------------------------- ---------- ----------
    20 Hartstein 13000 3500
    20 Fay 6000 3500
    30 Raphaely 11000 3069.6091
    30 Khoo 3100 3069.6091
    30 Baida 2900 3069.6091
    30 Colmenares 2500 3069.6091
    30 Himuro 2600 3069.6091
    30 Tobias 2800 3069.6091
    60 Hunold 9000 1722.32401
    60 Ernst 6000 1722.32401
    60 Austin 4800 1722.32401
    60 Pataballa 4800 1722.32401
    60 Lorentz 4200 1722.32401

    106。STDDEV_SAMP
    功能描述: 该函数计算累积样本标准偏离,并返回总体变量的平方根,其返回值与VAR_POP函数的平方根相同。(Standard Deviation-Sample)
    SAMPLE:下例返回部门20、30、60的薪水值的样本标准偏差

    SELECT department_id, last_name, hire_date, salary,
    STDDEV_SAMP(salary) OVER
    (PARTITION BY department_id ORDER BY hire_date
    ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
    FROM employees
    WHERE department_id in (20,30,60);

    DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV
    ------------- ------------------------- ---------- ---------- ----------
    20 Hartstein 17-2月 -96 13000
    20 Fay 17-8月 -97 6000 4949.74747
    30 Raphaely 07-12月-94 11000
    30 Khoo 18-5月 -95 3100 5586.14357
    30 Tobias 24-7月 -97 2800 4650.0896
    30 Baida 24-12月-97 2900 4035.26125
    30 Himuro 15-11月-98 2600 3649.2465
    30 Colmenares 10-8月 -99 2500 3362.58829
    60 Hunold 03-1月 -90 9000
    60 Ernst 21-5月 -91 6000 2121.32034
    60 Austin 25-6月 -97 4800 2163.33077
    60 Pataballa 05-2月 -98 4800 1982.42276
    60 Lorentz 07-2月 -99 4200 1925.61678


    107。SUM
    功能描述:该函数计算组中表达式的累积和。
    SAMPLE:下例计算同一经理下员工的薪水累积值

    SELECT manager_id, last_name, salary,
    SUM (salary) OVER (PARTITION BY manager_id ORDER BY salary
    RANGE UNBOUNDED PRECEDING) l_csum
    FROM employees
    WHERE manager_id in (101,103,108);

    MANAGER_ID LAST_NAME SALARY L_CSUM
    ---------- ------------------------- ---------- ----------
    101 Whalen 4400 4400
    101 Mavris 6500 10900
    101 Baer 10000 20900
    101 Greenberg 12000 44900
    101 Higgins 12000 44900
    103 Lorentz 4200 4200
    103 Austin 4800 13800
    103 Pataballa 4800 13800
    103 Ernst 6000 19800
    108 Popp 6900 6900
    108 Sciarra 7700 14600
    108 Urman 7800 22400
    108 Chen 8200 30600
    108 Faviet 9000 39600

    108。VAR_POP
    功能描述:(Variance Population)该函数返回非空集合的总体变量(忽略null),VAR_POP进行如下计算:
    (SUM(expr2) - SUM(expr)2 / COUNT(expr)) / COUNT(expr)
    SAMPLE:下例计算1998年每月销售的累积总体和样本变量(本例在SH用户下运行)

    SELECT t.calendar_month_desc,
    VAR_POP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
    VAR_SAMP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
    FROM sales s, times t
    WHERE s.time_id = t.time_id AND t.calendar_year = 1998
    GROUP BY t.calendar_month_desc;

    CALENDAR Var_Pop Var_Samp
    -------- ---------- ----------
    1998-01 0
    1998-02 6.1321E+11 1.2264E+12
    1998-03 4.7058E+11 7.0587E+11
    1998-04 4.6929E+11 6.2572E+11
    1998-05 1.5524E+12 1.9405E+12
    1998-06 2.3711E+12 2.8453E+12
    1998-07 3.7464E+12 4.3708E+12
    1998-08 3.7852E+12 4.3260E+12
    1998-09 3.5753E+12 4.0222E+12
    1998-10 3.4343E+12 3.8159E+12
    1998-11 3.4245E+12 3.7669E+12
    1998-12 4.8937E+12 5.3386E+12

    109。VAR_SAMP
    功能描述:(Variance Sample)该函数返回非空集合的样本变量(忽略null),VAR_POP进行如下计算:
    (SUM(expr*expr)-SUM(expr)*SUM(expr)/COUNT(expr))/(COUNT(expr)-1)
    SAMPLE:下例计算1998年每月销售的累积总体和样本变量

    SELECT t.calendar_month_desc,
    VAR_POP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
    VAR_SAMP(SUM(s.amount_sold))
    OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
    FROM sales s, times t
    WHERE s.time_id = t.time_id AND t.calendar_year = 1998
    GROUP BY t.calendar_month_desc;

    CALENDAR Var_Pop Var_Samp
    -------- ---------- ----------
    1998-01 0
    1998-02 6.1321E+11 1.2264E+12
    1998-03 4.7058E+11 7.0587E+11
    1998-04 4.6929E+11 6.2572E+11
    1998-05 1.5524E+12 1.9405E+12
    1998-06 2.3711E+12 2.8453E+12
    1998-07 3.7464E+12 4.3708E+12
    1998-08 3.7852E+12 4.3260E+12
    1998-09 3.5753E+12 4.0222E+12
    1998-10 3.4343E+12 3.8159E+12
    1998-11 3.4245E+12 3.7669E+12
    1998-12 4.8937E+12 5.3386E+12

    110。VARIANCE
    功能描述:该函数返回表达式的变量,Oracle计算该变量如下:
    如果表达式中行数为1,则返回0
    如果表达式中行数大于1,则返回VAR_SAMP
    SAMPLE:下例返回部门30按雇佣日期排序的薪水值的累积变化

    SELECT last_name, salary, VARIANCE(salary)
    OVER (ORDER BY hire_date) "Variance"
    FROM employees
    WHERE department_id = 30;

  • 相关阅读:
    大数据量问题,按需按实际查询而不是一次加载。
    spring中注解事务认识
    sqlmap文件在tomcat7中运行报错原因及<![CDATA[ ]]>
    网站404,500错误页面的处理,及500异常写入errorLog日志
    javascript div z-index, input tabindex属性说明
    sqlmap映射继承机制及映射字段顺序与SQL查询字段顺序无关
    jquery类选择器无法取得对象问题原因
    linux服务器初步印象,远程连接mysql数据库,传输文件,启动/关闭tomcat命令
    Linux iptables 防火墙详解
    Nginx之location 匹配规则详解
  • 原文地址:https://www.cnblogs.com/danghuijian/p/4400527.html
Copyright © 2011-2022 走看看