zoukankan      html  css  js  c++  java
  • TensorFlow从入门到理解(四):你的第一个循环神经网络RNN(分类例子)

    运行代码:

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # set random seed for comparing the two result calculations
    tf.set_random_seed(1)
    
    # this is data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    # hyperparameters
    lr = 0.001
    training_iters = 100000
    batch_size = 128
    
    n_inputs = 28   # MNIST data input (img shape: 28*28)
    n_steps = 28    # time steps
    n_hidden_units = 128   # neurons in hidden layer
    n_classes = 10      # MNIST classes (0-9 digits)
    
    # tf Graph input
    x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    # Define weights
    weights = {
        # (28, 128)
        'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
        # (128, 10)
        'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
    }
    biases = {
        # (128, )
        'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
        # (10, )
        'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
    }
    
    
    def RNN(X, weights, biases):
        # hidden layer for input to cell
    
        # transpose the inputs shape from
        # X ==> (128 batch * 28 steps, 28 inputs)
        X = tf.reshape(X, [-1, n_inputs])
    
        # into hidden
        # X_in = (128 batch * 28 steps, 128 hidden)
        X_in = tf.matmul(X, weights['in']) + biases['in']
        # X_in ==> (128 batch, 28 steps, 128 hidden)
        X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
    
        # cell
        ##########################################
    
        # basic LSTM Cell.
        cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units)
        # lstm cell is divided into two parts (c_state, h_state)
        init_state = cell.zero_state(batch_size, dtype=tf.float32)
    
        outputs, final_state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False)
    
        # unpack to list [(batch, outputs)..] * steps
        outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
        results = tf.matmul(outputs[-1], weights['out']) + biases['out']    # shape = (128, 10)
    
        return results
    
    
    pred = RNN(x, weights, biases)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
    train_op = tf.train.AdamOptimizer(lr).minimize(cost)
    
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        step = 0
        while step * batch_size < training_iters:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
            sess.run([train_op], feed_dict={
                x: batch_xs,
                y: batch_ys,
            })
            if step % 20 == 0:
                print(sess.run(accuracy, feed_dict={
                x: batch_xs,
                y: batch_ys,
                }))
            step += 1

    运行结果:

  • 相关阅读:
    JSON基础(Java)
    美式英语音标词对照表
    network adapter
    debian网络静态ip配置
    apt --fix-broken install
    CA certificate
    debian使用过程中常见的问题
    将普通用户添加到sudo
    nano
    jenkins安装和使用
  • 原文地址:https://www.cnblogs.com/darklights/p/9939273.html
Copyright © 2011-2022 走看看