zoukankan      html  css  js  c++  java
  • 阿里巴巴笔试题选解

    小题:(部分题目)

    1、有三个结点的,可以构成多少个种叉树?

    2、一副牌52(去掉大小王),从中抽取两张牌,一红一黑的概率是多少?

    编程题:

    3设计一个最优算法来查找一n个元素数组中的最大值和最小值。已知一种需要比较2n次的方法,请给一个更优的算法。情特别注意优化时间复杂度的常数。

    4已知三个升序整数数组a[l], b[m]和c[n]。请在三个数组中各找一个元素,是的组成的三元组距离最小。三元组的距离定义是:假设a[i]、b[j]和c[k]是一个三元组,那么距离为:

    Distance = max(|a[ I ] – b[ j ]|, |a[ I ] – c[ k ]|, |b[ j ] – c[ k ]|)

    请设计一个求最小三元组距离的最优算法,并分析时间复杂度。

    5在黑板上写下50个数字:1至50.在接下来的49轮操作中,每次做如下动作:选取两个黑板上的数字a和b,擦去,在黑板上写|b - a|。请问最后一次动作之后剩下数字可能是什么?为什么?

     

    题解:(题解非官方,仅供参考,有错误的地方望指正!谢谢)

    1、有三个结点的,可以构成多少个种树形结构?

    解:应该是5种;

     

    2、一副牌52(去掉大小王),从中抽取两张牌,一红一黑的概率是多少?

    考察概率论知识

    解法一: 52张牌从中抽两张,就是 C(2,52)种情况,一红一黑是C(1,26) * C(1,26)种

        P = [C(1,26) * C(1,26) ] / C(2,52) = 26 * 26 / (26 * 51) = 26/51

    解法二: 全为黑或者全为红是C(2,26)种情况,由于是黑和红两种,所以要乘以2

        P = 1 - C(2,26) / C(2,52) - C(2,26) / C(2,52) = 1 - 2 * (26 * 25)/(51 * 52) = 1 - 25/51 = 26/51

    3设计一个最优算法来查找一n个元素数组中的最大值和最小值。已知一种需要比较2n次的方法,请给一个更优的算法。情特别注意优化时间复杂度的常数。

    解:把数组两两一对分组,如果数组元素个数为奇数,就最后单独分一个,然后分别对每一组的两个数比较,把小的放在左边,大的放在右边,这样遍历下来,总共比较的次数是 N/2 次;在前面分组的基础上,那么可以得到结论,最小值一定在每一组的左边部分找,最大值一定在数组的右边部分找,最大值和最小值的查找分别需要比较N/2 次和N/2 次;这样就可以找到最大值和最小值了,比较的次数为

          N/2 * 3 = (3N)/2 次

    如图会更加清晰:

    代码实现:

    #include <stdio.h>
    #include <stdlib.h>
    #define N 7
    int main()
    {
    int arr[N] = {4, 1, 5, 9, 9, 7, 10};
    int iter = 0;
    int cnt = 0;
    for(iter = 0; iter <= N / 2 + 1 ; iter += 2)
    {
    if(++cnt && arr[iter] > arr[iter + 1] )
    {
    int temp = arr[iter];
    arr[iter] = arr[iter + 1];
    arr[iter + 1] = temp;
    }
    }
    int myMin = arr[0];
    for(iter = 2; iter < N ; iter += 2)
    {
    if(++cnt && arr[iter] < myMin)
    {
    myMin = arr[iter];
    }
    }
    int myMax = arr[1];
    for(iter = 3; iter < N; iter += 2)
    {
    if(++cnt && arr[iter] > myMax)
    {
    myMax = arr[iter];
    }
    }
    if(N % 2 != 0 && ++cnt && myMax < arr[N - 1]) myMax = arr[N - 1];
    printf("min is %d ", myMin);
    printf("max is %d ", myMax);
    printf("compare times is %d", cnt);
    return 0;
    }

    4已知三个升序整数数组a[l], b[m]和c[n]。请在三个数组中各找一个元素,是的组成的三元组距离最小。三元组的距离定义是:假设a[i]、b[j]和c[k]是一个三元组,那么距离为:

    Distance = max(|a[ I ] – b[ j ]|, |a[ I ] – c[ k ]|, |b[ j ] – c[ k ]|)

    请设计一个求最小三元组距离的最优算法,并分析时间复杂度。

    解:这道题目有两个关键点:

      第一个关键点: max{|x1-x2|,|y1-y2|} =(|x1+y1-x2-y2|+|x1-y1-(x2-y2)|)/2   --公式(1)

      我们假设x1=a[ i ],x2=b[ j ],x3=c[ k ],则

    Distance = max(|x1 – x2|, |x1 – x3|, |x2 – x3|) = max(   max(|x1 – x2|, |x1 – x3|) , |x2 – x3|)   --公式(2)

      根据公式(1),max(|x1 – x2|, |x1 – x3|) = 1/2 ( |2x1 – x2– x3| +  |x2 – x3|),带入公式(2),得到

    Distance = max( 1/2 ( |2x1 – x2– x3| +  |x2 – x3|) , |x2 – x3| )  

          =1/2 * max(  |2x1 – x2– x3|  , |x2 – x3| ) + 1/2*|x2 – x3//把相同部分1/2*|x2 – x3|分离出来

          =1/2 * max(  |2x1 – (x2 + x3)|  , |x2 – x3| ) + 1/2*|x2 – x3|   //把(x2 + x3)看成一个整体,使用公式(1)

          =1/2 * 1/2 *((|2x1 – 2x2| + |2x1 – 2x3|) + 1/2*|x2 – x3|

          =1/2 *|x1 – x2| + 1/2 * |x1 – x3| + 1/2*|x2 – x3|

          =1/2 *(|x1 – x2| + |x1 – x3| + |x2 – x3|)  //求出来了等价公式,完毕!

      第二个关键点:如何找到(|x1 – x2| + |x1 – x3| + |x2 – x3|) 的最小值,x1,x2,x3,分别是三个数组中的任意一个数,这一题,我只是做到了上面的推导,后面的算法设计是由csdn上的两个朋友想出来的方法,他们的CSDN的ID分别为 “云梦泽” 和 “cc ”.

    算法思想是:

      用三个指针分别指向a,b,c中最小的数,计算一次他们最大距离的Distance ,然后在移动三个数中较小的数组指针,再计算一次,每次移动一个,直到其中一个数组结束为止,最慢(l+ m + n)次,复杂度为O(l+ m + n)

    代码如下:

    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    #define l 3
    #define m 4
    #define n 6
    int Mymin(int a, int b, int c)
    {
        int Min = a < b ? a : b;
        Min = Min < c ? Min : c;
        return Min;
    }
    
    int Solvingviolence(int a[], int b[], int c[])
    {
        //暴力解法,大家都会,不用过多介绍了!
        int i = 0, j = 0, k = 0;
        int MinSum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
    //    int store[3] = {0};
        int Sum = 0;
        for(i = 0; i < l; i++)
        {
            for(j = 0; j < m; j++)
            {
                for(k = 0; k < n; k++)
                {
                    Sum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
                    if(MinSum > Sum)
                    {
                        MinSum = Sum;
    //                    store[0] = i;
    //                    store[1] = j;
    //                    store[2] = k;
                    }
                }
            }
        }
    //    printf("the min is %d
    ", minABC);
    //    printf("the three number is %-3d%-3d%-3d
    ", a[store[0]], b[store[1]], c[store[2]]);
        return MinSum;
    
    }
    
    int MinDistance(int a[], int b[], int c[])
    {
        int MinSum = 0; //最小的绝对值和
        int Sum = 0;  //计算三个绝对值的和,与最小值做比较
        int MinOFabc = 0; // a[i] , b[j] ,c[k]的最小值
        int cnt = 0;  //循环次数统计,最多是l + m + n次
        int i = 0, j = 0, k = 0;  //a,b,c三个数组的下标索引
        MinSum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
        for(cnt = 0; cnt <= l + m + n; cnt++)
        {
            Sum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
            MinSum = MinSum < Sum ? MinSum : Sum;
            MinOFabc = Mymin(a[i] ,b[j] ,c[k]);//找到a[i] ,b[j] ,c[k]的最小值
            //判断哪个是最小值,做相应的索引移动
            if(MinOFabc == a[i])
            {
                if(++i >= l) break;
            }//a[i]最小,移动i
    
            if(MinOFabc == b[j])
            {
                if(++j >= m) break;
            }//b[j]最小,移动j
            if(MinOFabc == c[k])
            {
                if(++k >= n) break;
            }//c[k]最小,移动k
    
        }
        return MinSum;
    }
    int main(void)
    {
        int a[l] = {5, 6, 7};
        int b[m] = {13, 14, 15, 17};
        int c[n] = {19, 22, 24, 29, 32, 42};
    
        printf("
    By violent solution ,the min is %d
    ", Solvingviolence(a, b, c));
        printf("
    By Optimal solution ,the min is %d
    ", MinDistance(a, b, c));
        return 0;
    }
    复制代码
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    #define l 3
    #define m 4
    #define n 6
    int Mymin(int a, int b, int c)
    {
        int Min = a < b ? a : b;
        Min = Min < c ? Min : c;
        return Min;
    }
    
    int Solvingviolence(int a[], int b[], int c[])
    {
        //暴力解法,大家都会,不用过多介绍了!
        int i = 0, j = 0, k = 0;
        int MinSum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
    //    int store[3] = {0};
        int Sum = 0;
        for(i = 0; i < l; i++)
        {
            for(j = 0; j < m; j++)
            {
                for(k = 0; k < n; k++)
                {
                    Sum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
                    if(MinSum > Sum)
                    {
                        MinSum = Sum;
    //                    store[0] = i;
    //                    store[1] = j;
    //                    store[2] = k;
                    }
                }
            }
        }
    //    printf("the min is %d
    ", minABC);
    //    printf("the three number is %-3d%-3d%-3d
    ", a[store[0]], b[store[1]], c[store[2]]);
        return MinSum;
    
    }
    
    int MinDistance(int a[], int b[], int c[])
    {
        int MinSum = 0; //最小的绝对值和
        int Sum = 0;  //计算三个绝对值的和,与最小值做比较
        int MinOFabc = 0; // a[i] , b[j] ,c[k]的最小值
        int cnt = 0;  //循环次数统计,最多是l + m + n次
        int i = 0, j = 0, k = 0;  //a,b,c三个数组的下标索引
        MinSum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
        for(cnt = 0; cnt <= l + m + n; cnt++)
        {
            Sum = (abs(a[i] - b[j]) + abs(a[i] - c[k]) + abs(b[j] - c[k])) / 2;
            MinSum = MinSum < Sum ? MinSum : Sum;
            MinOFabc = Mymin(a[i] ,b[j] ,c[k]);//找到a[i] ,b[j] ,c[k]的最小值
            //判断哪个是最小值,做相应的索引移动
            if(MinOFabc == a[i])
            {
                if(++i >= l) break;
            }//a[i]最小,移动i
    
            if(MinOFabc == b[j])
            {
                if(++j >= m) break;
            }//b[j]最小,移动j
            if(MinOFabc == c[k])
            {
                if(++k >= n) break;
            }//c[k]最小,移动k
    
        }
        return MinSum;
    }
    int main(void)
    {
        int a[l] = {5, 6, 7};
        int b[m] = {13, 14, 15, 17};
        int c[n] = {19, 22, 24, 29, 32, 42};
    
        printf("
    By violent solution ,the min is %d
    ", Solvingviolence(a, b, c));
        printf("
    By Optimal solution ,the min is %d
    ", MinDistance(a, b, c));
        return 0;
    }
    复制代码
    高山仰止, 景行行止。 四牡鲱鲱, 六辔如琴。 觏尔新婚, 以慰我心。
  • 相关阅读:
    【HDU 5750】Dertouzos(数学)
    【OpenJ_POJ C16D】Extracurricular Sports(构造,找规律)
    【CodeForces 266C】Below the Diagonal(模拟)
    【CodeForces 261B】Maxim and Restaurant(DP,期望)
    【ACdream 1187】Rational Number Tree(树,递归)
    A1231. Crash的数字表格(贾志鹏)
    [精准]圆周率
    poj1743 Musical Theme
    3343: 教主的魔法[分块]
    [HNOI2008]玩具装箱toy
  • 原文地址:https://www.cnblogs.com/davidshi/p/3337337.html
Copyright © 2011-2022 走看看