http://acm.hust.edu.cn/vjudge/contest/121397#problem/A
Description
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
数学渣渣,表示真的不会~
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<stdio.h> #include<math.h> #include<string.h> #include<ctype.h> #include<stdlib.h> #include <iostream> #include<algorithm> #include<queue> #define oo 0x3f3f3f3f using namespace std; const int maxn = 1000010; const double P = 0.57721566490153286060651209; double a[maxn]; int main() { for(int i = 1; i <= 1000000; i++) a[i] = a[i-1] + 1.0/i; int cnt = 1; int T; scanf("%d", &T); while(T--) { int n; scanf("%d", &n); double ans; if(n <= 1000000) ans = a[n]; else ans = log(n+0.5) + P; printf("Case %d: %.10lf ", cnt++, ans); } return 0; }