zoukankan      html  css  js  c++  java
  • spark学习进度21(聚合操作、连接操作)

    聚合操作:

    groupby:

    // 1. 创建 SparkSession
      val spark = SparkSession.builder()
        .master("local[6]")
        .appName("agg processor")
        .getOrCreate()
    
      import spark.implicits._
    
      @Test
      def groupBy(): Unit = {
        // 2. 数据读取
        val schema = StructType(
          List(
            StructField("id", IntegerType),
            StructField("year", IntegerType),
            StructField("month", IntegerType),
            StructField("day", IntegerType),
            StructField("hour", IntegerType),
            StructField("season", IntegerType),
            StructField("pm", DoubleType)
          )
        )
    
        val sourceDF = spark.read
          .schema(schema)
          .option("header", value = true)
          .csv("dataset/beijingpm_with_nan.csv")
    
        // 3. 数据去掉空值
        val cleanDF = sourceDF.where('pm =!= Double.NaN)
    
        // 分组
        val groupedDF: RelationalGroupedDataset = cleanDF.groupBy('year, $"month")
    
        // 4. 使用 functions 函数来完成聚合
        import org.apache.spark.sql.functions._
    
        // 本质上, avg 这个函数定义了一个操作, 把表达式设置给 pm 列
        // select avg(pm) from ... group by
        groupedDF.agg(avg('pm) as "pm_avg")
          .orderBy('pm_avg.desc)
          .show()
    
        groupedDF.agg(stddev(""))//求方差
          .orderBy('pm_avg.desc)
          .show()
    
        // 5. 使用 GroupedDataset 的 API 来完成聚合
        groupedDF.avg("pm")
          .select($"avg(pm)" as "pm_avg")
          .orderBy("pm_avg")
          .show()
    
        groupedDF.sum()
          .select($"avg(pm)" as "pm_avg")
          .orderBy("pm_avg")
          .show()
      }

    多维聚合:

      @Test
      def multiAgg(): Unit = {
        //不同来源的pm值
        //统计在同一个月,不同来源的pm
        //同一年,不同来源的pm的平均值
        //整体上看,不同来源的pm值是多少
        val schemaFinal = StructType(
          List(
            StructField("source", StringType),
            StructField("year", IntegerType),
            StructField("month", IntegerType),
            StructField("day", IntegerType),
            StructField("hour", IntegerType),
            StructField("season", IntegerType),
            StructField("pm", DoubleType)
          )
        )
    
        val pmFinal = spark.read
          .schema(schemaFinal)
          .option("header", value = true)
          .csv("dataset/pm_final.csv")
    
        import org.apache.spark.sql.functions._
    
        // 需求1: 不同年, 不同来源, PM 值的平均数
        // select source, year, avg(pm) as pm from ... group by source, year
        val postAndYearDF = pmFinal.groupBy('source, 'year)
          .agg(avg('pm) as "pm")
    
        // 需求2: 在整个数据集中, 按照不同的来源来统计 PM 值的平均数
        // select source, avg(pm) as pm from ... group by source
        val postDF = pmFinal.groupBy('source)
          .agg(avg('pm) as "pm")
          .select('source, lit(null) as "year", 'pm)
    
        // 合并在同一个结果集中
        postAndYearDF.union(postDF)
          .sort('source, 'year.asc_nulls_last, 'pm)
          .show()
      }

    rollup

      @Test
      def rollup(): Unit = {
        import org.apache.spark.sql.functions._
    
        val sales = Seq(
          ("Beijing", 2016, 100),
          ("Beijing", 2017, 200),
          ("Shanghai", 2015, 50),
          ("Shanghai", 2016, 150),
          ("Guangzhou", 2017, 50)
        ).toDF("city", "year", "amount")
    
        // 滚动分组, A, B 两列, AB, A, null
        sales.rollup('city, 'year)
          .agg(sum('amount) as "amount")
          .sort('city.asc_nulls_last, 'year.asc_nulls_last)
          .show()
      }

      @Test
      def rollup1(): Unit = {
        import org.apache.spark.sql.functions._
    
        // 1. 数据集读取
        val schemaFinal = StructType(
          List(
            StructField("source", StringType),
            StructField("year", IntegerType),
            StructField("month", IntegerType),
            StructField("day", IntegerType),
            StructField("hour", IntegerType),
            StructField("season", IntegerType),
            StructField("pm", DoubleType)
          )
        )
    
        val pmFinal = spark.read
          .schema(schemaFinal)
          .option("header", value = true)
          .csv("dataset/pm_final.csv")
    
        // 2. 聚合和统计
        // 需求1: 每个PM值计量者, 每年PM值统计的平均数 groupby source year
        // 需求2: 每个PM值计量者, 整体上的PM平均值 groupby source
        // 需求3: 全局所有的计量者, 和日期的PM值的平均值 groupby null
        pmFinal.rollup('source, 'year)
          .agg(avg('pm) as "pm")
          .sort('source.asc_nulls_last, 'year.asc_nulls_last)
          .show()
      }

     cube:全排列

     @Test
      def cube(): Unit = {
        val schemaFinal = StructType(
          List(
            StructField("source", StringType),
            StructField("year", IntegerType),
            StructField("month", IntegerType),
            StructField("day", IntegerType),
            StructField("hour", IntegerType),
            StructField("season", IntegerType),
            StructField("pm", DoubleType)
          )
        )
    
        val pmFinal = spark.read
          .schema(schemaFinal)
          .option("header", value = true)
          .csv("dataset/pm_final.csv")
    
        import org.apache.spark.sql.functions._
    
        pmFinal.cube('source, 'year)
          .agg(avg('pm) as "pm")
          .sort('source.asc_nulls_last, 'year.asc_nulls_last)
          .show()
      }

    cubeSql:

      @Test
      def cubeSql(): Unit = {
        val schemaFinal = StructType(
          List(
            StructField("source", StringType),
            StructField("year", IntegerType),
            StructField("month", IntegerType),
            StructField("day", IntegerType),
            StructField("hour", IntegerType),
            StructField("season", IntegerType),
            StructField("pm", DoubleType)
          )
        )
    
        val pmFinal = spark.read
          .schema(schemaFinal)
          .option("header", value = true)
          .csv("dataset/pm_final.csv")
    
        pmFinal.createOrReplaceTempView("pm_final")//临时表
    
        val result = spark.sql("select source, year, avg(pm) as pm from pm_final group by source, year " +
          "grouping sets ((source, year), (source), (year), ())" +
          "order by source asc nulls last, year asc nulls last")
    
        result.show()
      }

    RelationalGroupedDataset

    常见的 RelationalGroupedDataset 获取方式有三种

    • groupBy

    • rollup

    • cube

    无论通过任何一种方式获取了 RelationalGroupedDataset 对象, 其所表示的都是是一个被分组的 DataFrame, 通过这个对象, 可以对数据集的分组结果进行聚合

    val groupedDF: RelationalGroupedDataset = pmDF.groupBy('year)

    需要注意的是, RelationalGroupedDataset 并不是 DataFrame, 所以其中并没有 DataFrame 的方法, 只有如下一些聚合相关的方法, 如下这些方法在调用过后会生成 DataFrame 对象, 然后就可以再次使用 DataFrame 的算子进行操作了

    操作符解释

    avg

    求平均数

    count

    求总数

    max

    求极大值

    min

    求极小值

    mean

    求均数

    sum

    求和

    agg

    聚合, 可以使用 sql.functions 中的函数来配合进行操作

    pmDF.groupBy('year)
        .agg(avg('pm) as "pm_avg")

    连接操作:

    无类型连接算子 join 的 API

    Step 1: 什么是连接

    按照 PostgreSQL 的文档中所说, 只要能在一个查询中, 同一时间并发的访问多条数据, 就叫做连接.

    做到这件事有两种方式

    1. 一种是把两张表在逻辑上连接起来, 一条语句中同时访问两张表

      select * from user join address on user.address_id = address.id
    2. 还有一种方式就是表连接自己, 一条语句也能访问自己中的多条数据

      select * from user u1 join (select * from user) u2 on u1.id = u2.id

    Step 2: join 算子的使用非常简单, 大致的调用方式如下

    join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame

    Step 3: 简单连接案例

    表结构如下

    +---+------+------+            +---+---------+
    | id|  name|cityId|            | id|     name|
    +---+------+------+            +---+---------+
    |  0|  Lucy|     0|            |  0|  Beijing|
    |  1|  Lily|     0|            |  1| Shanghai|
    |  2|   Tim|     2|            |  2|Guangzhou|
    |  3|Danial|     0|            +---+---------+
    +---+------+------+

    如果希望对这两张表进行连接, 首先应该注意的是可以连接的字段, 比如说此处的左侧表 cityId 和右侧表 id 就是可以连接的字段, 使用 join 算子就可以将两个表连接起来, 进行统一的查询

    val person = Seq((0, "Lucy", 0), (1, "Lily", 0), (2, "Tim", 2), (3, "Danial", 0))
      .toDF("id", "name", "cityId")
    
    val cities = Seq((0, "Beijing"), (1, "Shanghai"), (2, "Guangzhou"))
      .toDF("id", "name")
    
    person.join(cities, person.col("cityId") === cities.col("id"))
      .select(person.col("id"),
        person.col("name"),
        cities.col("name") as "city")
      .show()
    
    /**
      * 执行结果:
      *
      * +---+------+---------+
      * | id|  name|     city|
      * +---+------+---------+
      * |  0|  Lucy|  Beijing|
      * |  1|  Lily|  Beijing|
      * |  2|   Tim|Guangzhou|
      * |  3|Danial|  Beijing|
      * +---+------+---------+
      */

    Step 4: 什么是连接?

    现在两个表连接得到了如下的表

    +---+------+---------+
    | id|  name|     city|
    +---+------+---------+
    |  0|  Lucy|  Beijing|
    |  1|  Lily|  Beijing|
    |  2|   Tim|Guangzhou|
    |  3|Danial|  Beijing|
    +---+------+---------+

    通过对这张表的查询, 这个查询是作用于两张表的, 所以是同一时间访问了多条数据

    spark.sql("select name from user_city where city = 'Beijing'").show()
    
    /**
      * 执行结果
      *
      * +------+
      * |  name|
      * +------+
      * |  Lucy|
      * |  Lily|
      * |Danial|
      * +------+
      */
    20190529095232
    连接类型类型字段解释

    交叉连接

    cross

    解释

    交叉连接就是笛卡尔积, 就是两个表中所有的数据两两结对

    交叉连接是一个非常重的操作, 在生产中, 尽量不要将两个大数据集交叉连接, 如果一定要交叉连接, 也需要在交叉连接后进行过滤, 优化器会进行优化

    20190529120732
    SQL 语句
    select * from person cross join cities
    Dataset 操作
    person.crossJoin(cities)
      .where(person.col("cityId") === cities.col("id"))
      .show()

    内连接

    inner

    解释

    内连接就是按照条件找到两个数据集关联的数据, 并且在生成的结果集中只存在能关联到的数据

    20190529115831
    SQL 语句
    select * from person inner join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "inner")
      .show()

    全外连接

    outerfullfullouter

    解释

    内连接和外连接的最大区别, 就是内连接的结果集中只有可以连接上的数据, 而外连接可以包含没有连接上的数据, 根据情况的不同, 外连接又可以分为很多种, 比如所有的没连接上的数据都放入结果集, 就叫做全外连接

    20190529120033
    SQL 语句
    select * from person full outer join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "full") // "outer", "full", "full_outer"
      .show()

    左外连接

    leftouterleft

    解释

    左外连接是全外连接的一个子集, 全外连接中包含左右两边数据集没有连接上的数据, 而左外连接只包含左边数据集中没有连接上的数据

    20190529120139
    SQL 语句
    select * from person left join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "left") // leftouter, left
      .show()

    LeftAnti

    leftanti

    解释

    LeftAnti 是一种特殊的连接形式, 和左外连接类似, 但是其结果集中没有右侧的数据, 只包含左边集合中没连接上的数据

    20190529120454
    SQL 语句
    select * from person left anti join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "left_anti")
      .show()

    LeftSemi

    leftsemi

    解释

    和 LeftAnti 恰好相反, LeftSemi 的结果集也没有右侧集合的数据, 但是只包含左侧集合中连接上的数据

    20190529120406
    SQL 语句
    select * from person left semi join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "left_semi")
      .show()

    右外连接

    rightouterright

    解释

    右外连接和左外连接刚好相反, 左外是包含左侧未连接的数据, 和两个数据集中连接上的数据, 而右外是包含右侧未连接的数据, 和两个数据集中连接上的数据

    20190529120222
    SQL 语句
    select * from person right join cities on person.cityId = cities.id
    Dataset 操作
    person.join(right = cities,
      joinExprs = person("cityId") === cities("id"),
      joinType = "right") // rightouter, right
      .show()
     val spark = SparkSession.builder()
        .master("local[6]")
        .appName("join")
        .getOrCreate()
    
      import spark.implicits._
    
      private val person = Seq((0, "Lucy", 0), (1, "Lily", 0), (2, "Tim", 2), (3, "Danial", 3))
        .toDF("id", "name", "cityId")
      person.createOrReplaceTempView("person")
    
      private val cities = Seq((0, "Beijing"), (1, "Shanghai"), (2, "Guangzhou"))
        .toDF("id", "name")
      cities.createOrReplaceTempView("cities")
    
      @Test
      def introJoin(): Unit = {
        val person = Seq((0, "Lucy", 0), (1, "Lily", 0), (2, "Tim", 2), (3, "Danial", 0))
          .toDF("id", "name", "cityId")
    
        val cities = Seq((0, "Beijing"), (1, "Shanghai"), (2, "Guangzhou"))
          .toDF("id", "name")
    
        val df = person.join(cities, person.col("cityId") === cities.col("id"))
          .select(person.col("id"),
            person.col("name"),
            cities.col("name") as "city")
    //      .show()
        df.createOrReplaceTempView("user_city")
    
        spark.sql("select id, name, city from user_city where city = 'Beijing'")
          .show()
      }

    交叉连接:

      @Test
      def crossJoin(): Unit = {
        person.crossJoin(cities)
          .where(person.col("cityId") === cities.col("id"))
          .show()
    
        spark.sql("select u.id, u.name, c.name from person u cross join cities c " +
          "where u.cityId = c.id")
          .show()
      }

     内连接:

      @Test
      def inner(): Unit = {
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "inner")
          .show()
    
        spark.sql("select p.id, p.name, c.name " +
          "from person p inner join cities c on p.cityId = c.id")
          .show()
      }

     全外连接:

     @Test
      def fullOuter(): Unit = {
        // 内连接, 就是只显示能连接上的数据, 外连接包含一部分没有连接上的数据, 全外连接, 指左右两边没有连接上的数据, 都显示出来
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "full")
          .show()
    
        spark.sql("select p.id, p.name, c.name " +
          "from person p full outer join cities c " +
          "on p.cityId = c.id")
          .show()
      }

     左外连接:

      @Test
      def leftRight(): Unit = {
        // 左连接
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "left")
          .show()
    
        spark.sql("select p.id, p.name, c.name " +
          "from person p left join cities c " +
          "on p.cityId = c.id")
          .show()
    
        // 右连接
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "right")
          .show()
    
        spark.sql("select p.id, p.name, c.name " +
          "from person p right join cities c " +
          "on p.cityId = c.id")
          .show()
      }

     

     

     

    semi和anti:

     

    @Test
      def leftAntiSemi(): Unit = {
        // 左连接 anti
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "leftanti")
          .show()
    
        spark.sql("select p.id, p.name " +
          "from person p left anti join cities c " +
          "on p.cityId = c.id")
          .show()
    
        // 右连接
        person.join(cities,
          person.col("cityId") === cities.col("id"),
          joinType = "leftsemi")
          .show()
    
        spark.sql("select p.id, p.name " +
          "from person p left semi join cities c " +
          "on p.cityId = c.id")
          .show()
      }

     

     

  • 相关阅读:
    Fiddler配置及使用教程
    Fiddler模拟限速实战
    Fiddler之模拟响应、修改请求或响应数据(断点)
    Fiddler修改请求数据
    Fiddler基础用法-抓取浏览器数据包
    Fiddler高级用法-抓取手机app数据包
    计算机网络基础:可靠传输原理
    计算机网络基础:TCP和UDP
    计算机网络基础:帧结构 + 以太网
    计算机网络基础:TCP/IP协议栈
  • 原文地址:https://www.cnblogs.com/dazhi151/p/14275628.html
Copyright © 2011-2022 走看看