zoukankan      html  css  js  c++  java
  • C. Fadi and LCM

    Today, Osama gave Fadi an integer XX, and Fadi was wondering about the minimum possible value of max(a,b)max(a,b) such that LCM(a,b)LCM(a,b) equals XX. Both aa and bb should be positive integers.

    LCM(a,b)LCM(a,b) is the smallest positive integer that is divisible by both aa and bb. For example, LCM(6,8)=24LCM(6,8)=24, LCM(4,12)=12LCM(4,12)=12, LCM(2,3)=6LCM(2,3)=6.

    Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?

    Input

    The first and only line contains an integer XX (1X10121≤X≤1012).

    Output

    Print two positive integers, aa and bb, such that the value of max(a,b)max(a,b) is minimum possible and LCM(a,b)LCM(a,b) equals XX. If there are several possible such pairs, you can print any.

    Examples
    input
    Copy
    2
    
    output
    Copy
    1 2
    
    input
    Copy
    6
    
    output
    Copy
    2 3
    
    input
    Copy
    4
    
    output
    Copy
    1 4
    
    input
    Copy
    1
    
    output
    Copy
    1 1
    

     刚开始想多了,直接模拟不就完了。。。

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define pb              push_back
    #define mk              make_pair
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const int mod = 998244353;
    const int N = 2e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    
    int main()
    {
        ll x;
        cin >> x;
        for (ll i = sqrt(x); i >= 1; i--)
        {
            if (x % i==0 && lcm(i,x/i)==x)
            {
                cout << i <<" "<< x / i << endl;
                break;
            }
        }
        return 0;
    }
  • 相关阅读:
    Java的快速失败和安全失败
    Java RMI与RPC的区别
    Java动态代理之JDK实现和CGlib实现(简单易懂)
    JVM——字节码增强技术简介
    Linux内存分配机制之伙伴系统和SLAB
    操作系统动态内存管理——malloc和free的工作机制
    Java中的Map
    Java的PriorityQueue
    Java中的List
    Java中的Set
  • 原文地址:https://www.cnblogs.com/dealer/p/12990051.html
Copyright © 2011-2022 走看看