zoukankan      html  css  js  c++  java
  • A. Tile Painting

    Ujan has been lazy lately, but now has decided to bring his yard to good shape. First, he decided to paint the path from his house to the gate.

    The path consists of nn consecutive tiles, numbered from 11 to nn. Ujan will paint each tile in some color. He will consider the path aesthetic if for any two different tiles with numbers ii and jj, such that |ji||j−i| is a divisor of nn greater than 11, they have the same color. Formally, the colors of two tiles with numbers ii and jj should be the same if |ij|>1|i−j|>1 and nmod|ij|=0nmod|i−j|=0 (where xmodyxmody is the remainder when dividing xx by yy).

    Ujan wants to brighten up space. What is the maximum number of different colors that Ujan can use, so that the path is aesthetic?

    Input

    The first line of input contains a single integer nn (1n10121≤n≤1012), the length of the path.

    Output

    Output a single integer, the maximum possible number of colors that the path can be painted in.

    Examples
    input
    Copy
    4
    
    output
    Copy
    2
    
    input
    Copy
    5
    
    output
    Copy
    5
    
    Note

    In the first sample, two colors is the maximum number. Tiles 11 and 33 should have the same color since 4mod|31|=04mod|3−1|=0. Also, tiles 22 and 44 should have the same color since 4mod|42|=04mod|4−2|=0.

    In the second sample, all five colors can be used.

     递归分解质因数的部分对复杂度有点懵

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 998244353;
    const int N = 1e6 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool isprime(ll x)
    {
        for (int i = 2; i <= sqrt(x); i++)
        {
            if (x % i == 0)
                return 0;
        }
        return 1;
    }
    vector<int> vis(N + 5),pri;
    void sieve()
    {
        for (int i = 2; i < N; i++)
        {
            if (!vis[i])
                pri.push_back(i);
            for (int x : pri)
            {
                if ((ll)i * x > N)
                    break;
                vis[i * x] = 1;
                if (i % x == 0)
                    break;
            }
        }
    }
    ll n,ans,cnt;
    void work(ll now)
    {
        for (int d : pri)
        {
            if ((ll)d * d > now)
                break;
            if (now % d == 0)
            {
                ans = min(ans, (ll)d);
                cnt++;
                while (now % d == 0)
                    now /= d;
                work(now);
                break;
            }
        }
        if (now != 1)
            ans = min(ans, now), cnt++;
    }
    int main()
    {
        sieve();
        cin >> n;
        ans = n;
        work(n);
        if (cnt >= 2)
            cout << 1 << endl;
        else
            cout << ans << endl;
        return 0;
    }
  • 相关阅读:
    前端常见跨域解决方案
    VS单元测试--初级篇
    高等数学思路
    二元函数求极值判别式AC-B^2
    向量积详解
    伯努利分布均值和方差
    两个标准正态随机变量相乘的方差
    a分位数与双侧a分位数
    中心极限定理概念理解与记忆
    样本方差概念解析
  • 原文地址:https://www.cnblogs.com/dealer/p/13034798.html
Copyright © 2011-2022 走看看