Let's introduce some definitions that will be needed later.
Let prime(x)prime(x) be the set of prime divisors of xx. For example, prime(140)={2,5,7}prime(140)={2,5,7}, prime(169)={13}prime(169)={13}.
Let g(x,p)g(x,p) be the maximum possible integer pkpk where kk is an integer such that xx is divisible by pkpk. For example:
- g(45,3)=9g(45,3)=9 (4545 is divisible by 32=932=9 but not divisible by 33=2733=27),
- g(63,7)=7g(63,7)=7 (6363 is divisible by 71=771=7 but not divisible by 72=4972=49).
Let f(x,y)f(x,y) be the product of g(y,p)g(y,p) for all pp in prime(x)prime(x). For example:
- f(30,70)=g(70,2)⋅g(70,3)⋅g(70,5)=21⋅30⋅51=10f(30,70)=g(70,2)⋅g(70,3)⋅g(70,5)=21⋅30⋅51=10,
- f(525,63)=g(63,3)⋅g(63,5)⋅g(63,7)=32⋅50⋅71=63f(525,63)=g(63,3)⋅g(63,5)⋅g(63,7)=32⋅50⋅71=63.
You have integers xx and nn. Calculate f(x,1)⋅f(x,2)⋅…⋅f(x,n)mod(109+7)f(x,1)⋅f(x,2)⋅…⋅f(x,n)mod(109+7).
The only line contains integers xx and nn (2≤x≤1092≤x≤109, 1≤n≤10181≤n≤1018) — the numbers used in formula.
Print the answer.
10 2
2
20190929 1605
363165664
947 987654321987654321
593574252
In the first example, f(10,1)=g(1,2)⋅g(1,5)=1f(10,1)=g(1,2)⋅g(1,5)=1, f(10,2)=g(2,2)⋅g(2,5)=2f(10,2)=g(2,2)⋅g(2,5)=2.
In the second example, actual value of formula is approximately 1.597⋅101711.597⋅10171. Make sure you print the answer modulo (109+7)(109+7).
In the third example, be careful about overflow issue.
直接模拟
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> #include <unordered_set> #include <unordered_map> #define ll long long #define PII pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) using namespace std; int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = 3.14159265358979323846; const double eps = 1e-6; const int mod =1e9+7; const int N = 100005; //if(x<0 || x>=r || y<0 || y>=c) inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } ll qpow(ll m, ll k, ll mod) { ll res = 1, t = m; while (k) { if (k & 1) res = res * t % mod; t = t * t % mod; k >>= 1; } return res; } ll n, x; int main() { cin >> x >> n; vector<ll> a; for (int i = 2; i <= sqrt(x); i++) { if (x % i==0) { a.push_back(i); while (x % i == 0) x /= i; } } if(x!=1) a.push_back(x); ll res = 1; for (int i = 0; i < a.size(); i++) { ll cnt=0, tmp = n; while (tmp) { tmp /= a[i]; cnt+=tmp; } res = (res % mod * qpow(a[i],cnt,mod) % mod) % mod; } cout << res << endl; return 0; }