zoukankan      html  css  js  c++  java
  • C. Primes and Multiplication

    Let's introduce some definitions that will be needed later.

    Let prime(x)prime(x) be the set of prime divisors of xx. For example, prime(140)={2,5,7}prime(140)={2,5,7}, prime(169)={13}prime(169)={13}.

    Let g(x,p)g(x,p) be the maximum possible integer pkpk where kk is an integer such that xx is divisible by pkpk. For example:

    • g(45,3)=9g(45,3)=9 (4545 is divisible by 32=932=9 but not divisible by 33=2733=27),
    • g(63,7)=7g(63,7)=7 (6363 is divisible by 71=771=7 but not divisible by 72=4972=49).

    Let f(x,y)f(x,y) be the product of g(y,p)g(y,p) for all pp in prime(x)prime(x). For example:

    • f(30,70)=g(70,2)g(70,3)g(70,5)=213051=10f(30,70)=g(70,2)⋅g(70,3)⋅g(70,5)=21⋅30⋅51=10,
    • f(525,63)=g(63,3)g(63,5)g(63,7)=325071=63f(525,63)=g(63,3)⋅g(63,5)⋅g(63,7)=32⋅50⋅71=63.

    You have integers xx and nn. Calculate f(x,1)f(x,2)f(x,n)mod(109+7)f(x,1)⋅f(x,2)⋅…⋅f(x,n)mod(109+7).

    Input

    The only line contains integers xx and nn (2x1092≤x≤109, 1n10181≤n≤1018) — the numbers used in formula.

    Output

    Print the answer.

    Examples
    input
    Copy
    10 2
    
    output
    Copy
    2
    
    input
    Copy
    20190929 1605
    
    output
    Copy
    363165664
    
    input
    Copy
    947 987654321987654321
    
    output
    Copy
    593574252
    
    Note

    In the first example, f(10,1)=g(1,2)g(1,5)=1f(10,1)=g(1,2)⋅g(1,5)=1, f(10,2)=g(2,2)g(2,5)=2f(10,2)=g(2,2)⋅g(2,5)=2.

    In the second example, actual value of formula is approximately 1.597101711.597⋅10171. Make sure you print the answer modulo (109+7)(109+7).

    In the third example, be careful about overflow issue.

     直接模拟

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod =1e9+7;
    const int N = 100005;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }       
    
    ll n, x;
    int main()
    {
        cin >> x >> n;
        vector<ll> a;
        for (int i = 2; i <= sqrt(x); i++)
        {
            if (x % i==0)
            {
                a.push_back(i);
                while (x % i == 0)
                    x /= i;
            }
        }
        if(x!=1)
            a.push_back(x);
        ll res = 1;
        for (int i = 0; i < a.size(); i++)
        {
            ll cnt=0, tmp = n;
            while (tmp)
            {
                tmp /= a[i];
                cnt+=tmp;
            }
            res = (res % mod * qpow(a[i],cnt,mod) % mod) % mod;
        }
        cout << res << endl;
        return 0;
    }
  • 相关阅读:
    zabbix3.0.4使用percona-monitoring-plugins插件来监控mysql5.6的详细实现过程
    centos6.5环境wget报错Unable to establish SSL connection
    文件缓存tmpfs简单使用
    codis3.2安装报错dashboard.go:369: [PANIC] call rpc create-proxy to dashboard 127.0.0.1:18080 failed的处理
    saltstack自动化运维系列12配置管理安装redis-3.2.8
    反向代理负载均衡之APACHE
    web服务器tomcat入门实战
    haproxy配置基于ssl证书的https负载均衡
    keepalived实现haproxy负载均衡器的高可用
    centos7使用haproxy1.7.5实现反向代理负载均衡实战
  • 原文地址:https://www.cnblogs.com/dealer/p/13064189.html
Copyright © 2011-2022 走看看