zoukankan      html  css  js  c++  java
  • G

    Problem Statement

    There is a directed graph GG with NN vertices and MM edges. The vertices are numbered 1,2,,N1,2,…,N, and for each ii (1iM1≤i≤M), the ii-th directed edge goes from Vertex xixi to yiyiGG does not contain directed cycles.

    Find the length of the longest directed path in GG. Here, the length of a directed path is the number of edges in it.

    Constraints

    • All values in input are integers.
    • 2N1052≤N≤105
    • 1M1051≤M≤105
    • 1xi,yiN1≤xi,yi≤N
    • All pairs (xi,yi)(xi,yi) are distinct.
    • GG does not contain directed cycles.

    Input

    Input is given from Standard Input in the following format:

    NN MM
    x1x1 y1y1
    x2x2 y2y2
    ::
    xMxM yMyM
    

    Output

    Print the length of the longest directed path in GG.


    Sample Input 1 Copy

    Copy
    4 5
    1 2
    1 3
    3 2
    2 4
    3 4
    

    Sample Output 1 Copy

    Copy
    3
    

    The red directed path in the following figure is the longest:


    Sample Input 2 Copy

    Copy
    6 3
    2 3
    4 5
    5 6
    

    Sample Output 2 Copy

    Copy
    2
    

    The red directed path in the following figure is the longest:


    Sample Input 3 Copy

    Copy
    5 8
    5 3
    2 3
    2 4
    5 2
    5 1
    1 4
    4 3
    1 3
    

    Sample Output 3 Copy

    Copy
    3
    

    The red directed path in the following figure is one of the longest:

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    #include <unordered_set>
    #include <unordered_map>
    #define ll              long long
    #define PII             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    using namespace std;
    int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod =1e9+7;
    const int N = 1e5+5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }      
    
    int main()
    {
        int n, m;
        cin >> n >> m;
        vector<vector<int>> a(n+1);
        vector<int> in(n + 1),dp(n+1);
        rep(i, 1, m)
        {
            int u, v;
            cin >> u >> v;
            a[u].push_back(v);
            in[v]++;
        }
        queue<int> q;
        rep(i, 1, n)
        {
            if (!in[i])
                q.push(i);
        }
        while (!q.empty())
        {
            int f = q.front();
            q.pop();
            for (int i = 0; i < a[f].size(); i++)
            {
                int to = a[f][i];
                in[to]--;
                if (!in[to])
                {
                    dp[to] = dp[f] + 1;
                    q.push(to);
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= n; i++)
            ans = max(ans, dp[i]);
        cout << ans << endl;
        return 0;
    }
  • 相关阅读:
    nginx 的请求处理阶段
    docker 的实践操作
    inno setup 1
    缓存算法
    think in uml-关系
    centos mono
    think in uml 2.1
    TFS 创建分支
    think in uml 1
    WebCast课程列表2
  • 原文地址:https://www.cnblogs.com/dealer/p/13150751.html
Copyright © 2011-2022 走看看