zoukankan      html  css  js  c++  java
  • Keras安装与测试遇到的坑

    Keras是基于python的深度学习库

    Keras是一个高层神经网络API,Keras由纯Python编写而成并基TensorflowTheano以及CNTK后端。

    安装步骤及遇到的坑:

    (1)安装tensorflow:CMD命令行输入pip install --upgrade tensorflow

    (2)安装Keras:pip install keras -U --pre

    (3)验证tensorflow

      jupyter notebook或者spyder输入以下代码:

      import tensorflow as tf
    
      hello = tf.constant(“hello,tensorflow”)
    
      sess = tf.Session()
    
      print(sess.run(hello))

      能显示“hello,tensorflow”则表示安装成功

    (4)验证keras,

      使用Keras中mnist数据集测试 下载Keras开发包,命令行输入以下命令

      >>> conda install git   #安装git工具
    
      >>> git clone https://github.com/fchollet/keras.git   #下载keras工程内容
    
      >>> cd keras/examples/    #进入测试代码所在路径
    
      >>> python mnist_mlp.py   #执行测试代码

    验证keras时遇到两个坑,问题描述及解决方案如下:

    (1)conda更新失败,安装git工具遇到CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://repo.anaconda.com/pkgs/main/win-64/git-2问题,解决办法是修改国内镜像源,改为清华镜像源即可

    >>>conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    >>>conda config --set show_channel_urls yes #生成配置文件
    

      修改生成的配置文件 C:Users<你的用户名>.condarc

    #修改前
    channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - default
    ssl_verify: true show_channel_urls: true

    #修改后
    channels:
      - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    ssl_verify: true show_channel_urls: true

      >>>conda info命令查看配置信息,确认修改成功后,>>>conda install git即可完成下载更新

    (2)keras中的example案例中MNIST数据集无法下载

      问题原因:keras 源码中下载MNIST的方式是 path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz'),数据源是通过 url = https://s3.amazonaws.com/img-datasets/mnist.npz 进行下载的。访问该 url 地址被墙了,导致 MNIST 相关的案例都

      卡在数据下载部分

      解决办法:

      (a)下载好 mnist_npz 数据集,并将其放于 .kerasexamples 目录下

      (b)修改mnist_mlp.py

    '''Trains a simple deep NN on the MNIST dataset.
    
    Gets to 98.40% test accuracy after 20 epochs
    (there is *a lot* of margin for parameter tuning).
    2 seconds per epoch on a K520 GPU.
    '''
    
    from __future__ import print_function
    
    import keras
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.optimizers import RMSprop
    
    batch_size = 128
    num_classes = 10
    epochs = 20
    
    #load data from local
    import numpy as np
    path = "./mnist.npz"
    f = np.load(path)
    x_train, y_train = f["x_train"], f["y_train"]
    x_test, y_test = f["x_test"], f["y_test"]
    f.close()
    
    # the data, split between train and test sets
    #(x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
    
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    
    model = Sequential()
    model.add(Dense(512, activation='relu', input_shape=(784,)))
    model.add(Dropout(0.2))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(num_classes, activation='softmax'))
    
    model.summary()
    
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSprop(),
                  metrics=['accuracy'])
    
    history = model.fit(x_train, y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

      

  • 相关阅读:
    如何把pdf文档转化为word
    Win7系统中wmiprvse.exe占用CPU高如何解决
    Visual studio加载项目时报错 尚未配置为Web项目XXXX指定的本地IIS,需要配置虚拟目录。解决办法。
    SQL Server新增用户并控制访问权限设置。
    vs2013 中已经添加了引用,编译还是提示没有添加引用
    vue-cli中引入jquery方法
    vue-vuex安装
    vue2.0项目结构和打包发布
    从(0)新开始vue2.0【安装】
    js判断网络连接情况:navigator.onLine
  • 原文地址:https://www.cnblogs.com/dearL/p/9515056.html
Copyright © 2011-2022 走看看