一.引入
决策树基本上是每一本机器学习入门书籍必讲的东西,其决策过程和平时我们的思维很相似,所以非常好理解,同时有一堆信息论的东西在里面,也算是一个入门应用,决策树也有回归和分类,但一般来说我们主要讲的是分类,方便理解嘛。
虽然说这是一个很简单的算法,但其实现其实还是有些烦人,因为其feature既有离散的,也有连续的,实现的时候要稍加注意
(不同特征的决策,图片来自【1】)
O-信息论的一些point:
二.各种算法
1.ID3
ID3算法就是对各个feature信息计算信息增益,然后选择信息增益最大的feature作为决策点将数据分成两部分
然后再对这两部分分别生成决策树。
图自【1】
2.C4.5
C4.5与ID3相比其实就是用信息增益比代替信息增益,应为信息增益有一个缺点:
信息增益选择属性时偏向选择取值多的属性
算法的整体过程其实与ID3差异不大:图自【2】
3.CART
CART(classification and regression tree)的算法整体过程和上面的差异不大,然是CART的决策是二叉树的
每一个决策只能是“是”和“否”,换句话说,即使一个feature有多个可能取值,也只选择其中一个而把数据分类
两部分而不是多个,这里我们主要讲一下分类树,它用到的是基尼指数:
图自【2】
三.代码及实现
好吧,其实我就想贴贴代码而已……本代码在https://github.com/justdark/dml/tree/master/dml/DT
纯属toy~~~~~实现的CART算法:
from __future__ import division import numpy as np import scipy as sp import pylab as py def pGini(y): ty=y.reshape(-1,).tolist() label = set(ty) sum=0 num_case=y.shape[0] #print y for i in label: sum+=(np.count_nonzero(y==i)/num_case)**2 return 1-sum class DTC: def __init__(self,X,y,property=None): ''' this is the class of Decision Tree X is a M*N array where M stands for the training case number N is the number of features y is a M*1 vector property is a binary vector of size N property[i]==0 means the the i-th feature is discrete feature,otherwise it's continuous in default,all feature is discrete ''' ''' I meet some problem here,because the ndarry can only have one type so If your X have some string parameter,all thing will translate to string in this situation,you can't have continuous parameter so remember: if you have continous parameter,DON'T PUT any STRING IN X !!!!!!!! ''' self.X=np.array(X) self.y=np.array(y) self.feature_dict={} self.labels,self.y=np.unique(y,return_inverse=True) self.DT=list() if (property==None): self.property=np.zeros((self.X.shape[1],1)) else: self.property=property for i in range(self.X.shape[1]): self.feature_dict.setdefault(i) self.feature_dict[i]=np.unique(X[:,i]) if (X.shape[0] != y.shape[0] ): print "the shape of X and y is not right" for i in range(self.X.shape[1]): for j in self.feature_dict[i]: pass#print self.Gini(X,y,i,j) pass def Gini(self,X,y,k,k_v): if (self.property[k]==0): #print X[X[:,k]==k_v],'dasasdasdasd' #print X[:,k]!=k_v c1 = (X[X[:,k]==k_v]).shape[0] c2 = (X[X[:,k]!=k_v]).shape[0] D = y.shape[0] return c1*pGini(y[X[:,k]==k_v])/D+c2*pGini(y[X[:,k]!=k_v])/D else: c1 = (X[X[:,k]>=k_v]).shape[0] c2 = (X[X[:,k]<k_v]).shape[0] D = y.shape[0] #print c1,c2,D return c1*pGini(y[X[:,k]>=k_v])/D+c2*pGini(y[X[:,k]<k_v])/D pass def makeTree(self,X,y): min=10000.0 m_i,m_j=0,0 if (np.unique(y).size<=1): return (self.labels[y[0]]) for i in range(self.X.shape[1]): for j in self.feature_dict[i]: p=self.Gini(X,y,i,j) if (p<min): min=p m_i,m_j=i,j if (min==1): return (y[0]) left=[] righy=[] if (self.property[m_i]==0): left = self.makeTree(X[X[:,m_i]==m_j],y[X[:,m_i]==m_j]) right = self.makeTree(X[X[:,m_i]!=m_j],y[X[:,m_i]!=m_j]) else : left = self.makeTree(X[X[:,m_i]>=m_j],y[X[:,m_i]>=m_j]) right = self.makeTree(X[X[:,m_i]<m_j],y[X[:,m_i]<m_j]) return [(m_i,m_j),left,right] def train(self): self.DT=self.makeTree(self.X,self.y) print self.DT def pred(self,X): X=np.array(X) result = np.zeros((X.shape[0],1)) for i in range(X.shape[0]): tp=self.DT while ( type(tp) is list): a,b=tp[0] if (self.property[a]==0): if (X[i][a]==b): tp=tp[1] else: tp=tp[2] else: if (X[i][a]>=b): tp=tp[1] else: tp=tp[2] result[i]=self.labels[tp] return result pass
这个maketree让我想起了线段树………………代码里的变量基本都有说明
试验代码:
from __future__ import division import numpy as np import scipy as sp from dml.DT import DTC X=np.array([ [0,0,0,0,8], [0,0,0,1,3.5], [0,1,0,1,3.5], [0,1,1,0,3.5], [0,0,0,0,3.5], [1,0,0,0,3.5], [1,0,0,1,3.5], [1,1,1,1,2], [1,0,1,2,3.5], [1,0,1,2,3.5], [2,0,1,2,3.5], [2,0,1,1,3.5], [2,1,0,1,3.5], [2,1,0,2,3.5], [2,0,0,0,10], ]) y=np.array([ [1], [0], [1], [1], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], ]) prop=np.zeros((5,1)) prop[4]=1 a=DTC(X,y,prop) a.train() print a.pred([[0,0,0,0,3.0],[2,1,0,1,2]])
可以看到可以学习出一个决策树:
展示出来大概是这样:注意第四个参数是连续变量