zoukankan      html  css  js  c++  java
  • Contest Hunter 模拟赛09 A [线段树维护斜率]

    题面

    传送门

    思路

    首先看看我们到底要干什么:有$1e6$次询问,遍历$i$,每次要求一个形如$b_i ast a_j - a_i ast b_j$的东西的最大值

    考虑如果一个$j$的决策在当前的$i$上比$k$这个位置更优会得到什么:

    $b_i ast a_j - a_i ast b_j > b_i ast a_k - a_i ast b_k$

    $b_i ast (a_j-a_k) > a_i ast (b_j-b_k)$

    $frac{b_i}{a_i} > frac{b_j-b_k}{a_j-a_k}$

    考虑对于询问区间维护右边那个玩意儿的下凸包$lis$,显然第一个满足$frac{b_{lis[j]}-b_{lis[j+1]}}{a_{lis[j]}-a_{lis[j+1]}} > frac{b_i}{a_i}$的$j$就是最优解,因为维护了下凸包所以这个东西可以二分

    我们开一棵线段树维护每个线段树节点区间上的下凸包,查询的时候就把目标区间拆分到线段树节点上,再做一次上面的操作

    线段树维护凸包的总复杂度是$O(qlog n)$,查询因为区间拆分完了二分,复杂度还是$O(qlog n)$

    Code

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cassert>
    #define MOD 1000000007
    #define ll long long
    using namespace std;
    inline ll read(){
    	ll re=0,flag=1;char ch=getchar();
    	while(!isdigit(ch)){
    		if(ch=='-') flag=-1;
    		ch=getchar();
    	}
    	while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
    	return re*flag;
    }
    int n;ll g[1000010];int a[1000010],b[1000010],c[1000010];
    int mmp[30000010],len[4000010];
    int *q[4000010],*cur=mmp;//动态内存池,实际上大概2.5e7就够了
    void build(int l,int r,int num){
    	q[num]=cur;len[num]=0;
    	cur+=r-l+2;
    	if(l==r) return;
    	int mid=(l+r)>>1;
    	build(l,mid,num<<1);
    	build(mid+1,r,num<<1|1);
    }
    inline double get(int l,int r){return (double)(b[r]-b[l])/(double)(a[r]-a[l]);}
    void change(int l,int r,int num,int pos){插入新元素,维护log个凸包
    	while(len[num]>=2&&get(q[num][len[num]-1],q[num][len[num]])>get(q[num][len[num]],pos)) q[num][len[num]--]=0;
    	q[num][++len[num]]=pos;
    	if(l==r) return;
    	int mid=(l+r)>>1;
    	if(mid>=pos) change(l,mid,num<<1,pos);
    	else change(mid+1,r,num<<1|1,pos);
    }
    inline ll f(int i,int j){
    	return 1ll*b[i]*a[j]-1ll*b[j]*a[i];
    }
    ll query(int l,int r,int ql,int qr,int num,double lim,int now){
    	if(l>=ql&&r<=qr){//找到目标拆分区间,二分查询
    		if(len[num]==1) return f(now,q[num][1]);//注意特判凸包只有一个点的情况
    		l=1;r=len[num]-1;int mid;
    		while(l<r){
    			mid=(l+r)>>1;
    			if(get(q[num][mid],q[num][mid+1])<lim) l=mid+1;
    			else r=mid;
    		}
    		if(l==len[num]-1&&get(q[num][l],q[num][l+1])<lim) l++;//注意特判找到的倒数第二个点没有最后一个点优的情况
    		return f(now,q[num][l]);
    	}
    	int mid=(l+r)>>1;ll re=-1e18;
    	if(mid>=ql) re=max(re,query(l,mid,ql,qr,num<<1,lim,now));
    	if(mid<qr) re=max(re,query(mid+1,r,ql,qr,num<<1|1,lim,now));
    	return re;
    }
    int main(){
    	n=read();int i;ll tmp;
    	for(i=1;i<=n;i++) a[i]=read();
    	for(i=1;i<=n;i++) b[i]=read();
    	for(i=1;i<=n;i++) c[i]=read();
    	build(1,n,1);
    	for(i=1;i<=n;i++){
    		a[i]^=g[i-1];
    		b[i]^=g[i-1];
    		c[i]^=g[i-1];
    		change(1,n,1,i);
    		g[i]=(g[i-1]+(tmp=query(1,n,1,i-c[i],1,(double)b[i]/(double)a[i],i))%MOD+MOD)%MOD;
    	}
    	cout<<g[n]<<'
    ';
    }
    
  • 相关阅读:
    随机读取记录
    js 抓取Google词库内容(仅供学习)
    分组统查询
    计时执行后台方法2
    js 调用WinForm角本
    vs2005 确保已安装文件类型(*.*)错误
    原创:SQL Server 数据库附加分离类
    Ajax Js倒计时执行后台方法
    空间前方交会和空间后方交会的区别
    cesium支持的3d模型格式
  • 原文地址:https://www.cnblogs.com/dedicatus545/p/10575114.html
Copyright © 2011-2022 走看看