zoukankan      html  css  js  c++  java
  • 混合高斯模型算法(转)

    下面介绍一下几种典型的机器算法

    首先第一种是高斯混合模型算法:

    高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种。

    (1)单高斯模型:

    为简单起见,阈值t的选取一般靠经验值来设定。通常意义下,我们一般取t=0.7-0.75之间。

    二维情况如下所示:

    (2)混合高斯模型:

          对于(b)图所示的情况,很明显,单高斯模型是无法解决的。为了解决这个问题,人们提出了高斯混合模型(GMM),顾名思义,就是数据可以看作是从数个高 斯分布中生成出来的。虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是 GMM是 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。

        每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

                    (1)

    其中,πk表示选中这个component部分的概率,我们也称其为加权系数。

    根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:

    (1)首先随机地在这 K 个 Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 πk,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。假设现在有 N 个数据点,我们认为这些数据点由某个GMM模型产生,现在我们要需要确定 πk,μk,σk 这些参数。很自然的,我们想到利用最大似然估计来确定这些参数,GMM的似然函数如下:

            (2)

    在最大似然估计里面,由于我们的目的是把乘积的形式分解为求和的形式,即在等式的左右两边加上一个log函数,但是由上文博客里的(2)式可以看出,转化为log后,还有log(a+b)的形式,因此,要进一步求解。

    我们采用EM算法,分布迭代求解最大值:

    EM算法的步骤这里不作详细的介绍,可以参见博客:

    http://blog.pluskid.org/?p=39

    贴出代码:

    复制代码
      1 function varargout = gmm(X, K_or_centroids)
    2 % ============================================================
    3 % Expectation-Maximization iteration implementation of
    4 % Gaussian Mixture Model.
    5 %
    6 % PX = GMM(X, K_OR_CENTROIDS)
    7 % [PX MODEL] = GMM(X, K_OR_CENTROIDS)
    8 %
    9 % - X: N-by-D data matrix.
    10 % - K_OR_CENTROIDS: either K indicating the number of
    11 % components or a K-by-D matrix indicating the
    12 % choosing of the initial K centroids.
    13 %
    14 % - PX: N-by-K matrix indicating the probability of each
    15 % component generating each point.
    16 % - MODEL: a structure containing the parameters for a GMM:
    17 % MODEL.Miu: a K-by-D matrix.
    18 % MODEL.Sigma: a D-by-D-by-K matrix.
    19 % MODEL.Pi: a 1-by-K vector.
    20 % ============================================================
    21
    22 threshold = 1e-15;
    23 [N, D] = size(X);
    24
    25 if isscalar(K_or_centroids)
    26 K = K_or_centroids;
    27 % randomly pick centroids
    28 rndp = randperm(N);
    29 centroids = X(rndp(1:K), :);
    30 else
    31 K = size(K_or_centroids, 1);
    32 centroids = K_or_centroids;
    33 end
    34
    35 % initial values
    36 [pMiu pPi pSigma] = init_params();
    37
    38 Lprev = -inf;
    39 while true
    40 Px = calc_prob();
    41
    42 % new value for pGamma
    43 pGamma = Px .* repmat(pPi, N, 1);
    44 pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K);
    45
    46 % new value for parameters of each Component
    47 Nk = sum(pGamma, 1);
    48 pMiu = diag(1./Nk) * pGamma' * X;
    49 pPi = Nk/N;
    50 for kk = 1:K
    51 Xshift = X-repmat(pMiu(kk, :), N, 1);
    52 pSigma(:, :, kk) = (Xshift' * ...
    53 (diag(pGamma(:, kk)) * Xshift)) / Nk(kk);
    54 end
    55
    56 % check for convergence
    57 L = sum(log(Px*pPi'));
    58 if L-Lprev < threshold
    59 break;
    60 end
    61 Lprev = L;
    62 end
    63
    64 if nargout == 1
    65 varargout = {Px};
    66 else
    67 model = [];
    68 model.Miu = pMiu;
    69 model.Sigma = pSigma;
    70 model.Pi = pPi;
    71 varargout = {Px, model};
    72 end
    73
    74 function [pMiu pPi pSigma] = init_params()
    75 pMiu = centroids;
    76 pPi = zeros(1, K);
    77 pSigma = zeros(D, D, K);
    78
    79 % hard assign x to each centroids
    80 distmat = repmat(sum(X.*X, 2), 1, K) + ...
    81 repmat(sum(pMiu.*pMiu, 2)', N, 1) - ...
    82 2*X*pMiu';
    83 [dummy labels] = min(distmat, [], 2);
    84
    85 for k=1:K
    86 Xk = X(labels == k, :);
    87 pPi(k) = size(Xk, 1)/N;
    88 pSigma(:, :, k) = cov(Xk);
    89 end
    90 end
    91
    92 function Px = calc_prob()
    93 Px = zeros(N, K);
    94 for k = 1:K
    95 Xshift = X-repmat(pMiu(k, :), N, 1);
    96 inv_pSigma = inv(pSigma(:, :, k));
    97 tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);
    98 coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));
    99 Px(:, k) = coef * exp(-0.5*tmp);
    100 end
    101 end
    102 end
    复制代码


        函数返回的 Px 是一个 N	imes K 的矩阵,对于每一个 x_i ,我们只要取该矩阵第 i 行中最大的那个概率值所对应的那个 Component 为 x_i 所属的 cluster 就可以实现一个完整的聚类方法了。

    转载于:http://www.cnblogs.com/CBDoctor/archive/2011/11/06/2236286.html

  • 相关阅读:
    Mybatis与Spring集成
    Mybatis 多对多
    Mybatis表关联多对一
    Mybatis表关联一对多
    Mybatis增删改查(CURD)
    Mybatis接口注解
    MyBatis环境配置及入门
    MyBatis教程
    Spring JDBC StoredProcedure类示例
    Spring JDBC SqlUpdate类示例
  • 原文地址:https://www.cnblogs.com/demo-deng/p/4757557.html
Copyright © 2011-2022 走看看