zoukankan      html  css  js  c++  java
  • 机器学习算法的分类


    大体来说, 可以分为三类.

    有监督学习

    有输入(x), 有标签(y). 学习一个函数(y=f(x))(x)映射到(y).
    理论上来说, (y)可以是任意的.

    • (y)是不连续的: 称为分类(Classification), 或模式识别(Pattern Recognition)
    • (y)是连续的: 称为回归(Regression)

    无监督学习

    只有输入数据, 没有label. 它的目标是在这些数据中发现一些有意义的知识, 所以, 无监督学习又叫知识发现(Knowledge Discovery). 根据发现的知识类型, 进一步又分为以下几个类别:

    • Discover Clusters. 聚类. E.g., K-means, Spectral Clustering, GMM.
    • Discover Latent Factors. 发现一些潜在的因子, 用它们可以以更低的维度更有效表达数据. 又称降维(Dimension Reduction). E.g., PCA.
    • Discover Graph Structures. 通过数据点与点之间的联系, 将整个数据集构成一个稀疏的graph. (TODO, for what? NNS?). E.g. graphic lasso
    • Matrix Completion. 补全缺失的数据. E.g. Collaborative filtering.
    • ...

    强化学习

    (TODO)


    #Reference * Machine Learning, a Probalistic Perspective. Chapter 1.
  • 相关阅读:
    time fly
    小论文初稿终于完成
    leetcode之Length of Last Word
    static关键字
    参数传递
    this关键字
    面向对象有三大特征
    空指针异常
    变量按数据类型分为
    构造方法
  • 原文地址:https://www.cnblogs.com/dengdan890730/p/6144522.html
Copyright © 2011-2022 走看看