Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
1 class Solution { 2 public: 3 int maxArea(vector<int> &height) { 4 int i = 0, j = height.size() - 1; 5 int max_area = 0; 6 while (i < j) { 7 int area = (j - i) * min(height[j], height[i]); 8 if (area > max_area) { 9 max_area = area; 10 } 11 if (height[i] <= height[j]) { 12 ++i; 13 } else { 14 --j; 15 } 16 } 17 return max_area; 18 } 19 };
容器的容积 C = min(ai, aj) * (j - i) (这里令 j > i) 。
从两边向中间夹逼扫描,所以第一个计算的是 j = n - 1, i = 0;
那么在夹逼的过程中,什么时候应该左指针向右,什么时候右指针向左呢?
回到容积计算公式,两边向中间扫描的过程中,因式中的(j - i)项一定是变小了,所以只有min(ai, aj)项增大才可能使得容积变大。所以应该当ai小的时候,右移左指针,aj小的时候左移右指针,检查下一个可能使得容积变大的容器。